
STANFORD ARTIFICIAL INfTELLIGENCE PROJECT
MEMOAIM-174

STAN-CS-72-303

CORRECTNESS OF TRANSLATIONS OF PROGRAMMING LANGUAGES
-AN ALGEBRAIC APPROACH

!^ BY rs

y? FRANCIS LOCKWOOD MORRIS CD
<
I

Q
<

SUPPORTED BY
NATIONAL SCIENCE FOUNDATION

AND
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 457

AUGUST 1972

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION IS UNLIMITED (A)

COMPUTER SCIENCE DEPARTMENT
oZ School of Humanities and Sciences
S STANFORD UNIVERSITY DTlC

G

85 06 13 012

■»"»■■""-■-■—'•?*•!• ." ^i^JW. w. ^J T.'« .■• ■>.■.;«<;■*■ f«u>-m.> ■ i^i **•'■, •■,if«>«v*^«^ ^M^i^^T^^^^^^V^^^v^p^p^

4P

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-171*

COMHJTER SCIENCE DEPARTMENT
REPORT CS-305

AUGUST 1972

Accession For

CORRECTNESS OF TRANSLATIONS OF PROGRAMMING LANGUAGES

--AN ALGEBRAIC APPROACH

Francis Lockwood Morris

NTIS GRAJtl
DTIC TAB
Unannounced f]
Justification

T
By
Distribution/

Availability Codes

Avail änd/ör
Special

Abstract NWNdUNCED
y Programming languages and their sets of meanings can be modell«d

by general operator algebras; semantic functions and compiling functions
by homomorphisms of operator algebras, A restricted class of individual
programs, machines, and computations can be modelled in a uniform
manner by binary relational algebras. These two applications of algebra
to computing are compatible: the semantic function provided by
interpreting (»'running^y one binary relational algebra on another is a
homomorphism on an operator algebra whose elements are binary
relational algebras.

Using these mathemati al tools, proofs can be provided systematically
of the correctness of compilers for fragmentary programming languages,
each embodying a single language "feature". Exemplary proofs are given
for statement sequences, arithmetic expressions. Boolean expressions,
assignment statements, ancf^while statements. Moreover, proofs of this
sort can be combined to provide (synthetic) proofs for, in principle,
many different complete programming languages. One example of such a
synthesis is given.

i

This research is supported in part by the National Science Foundation
under grant number NSF GJ-776 and in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-185).

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency of the U.S. Government.

Reproduced in the U.S.A. Available from the National Technical
Information Service. Springfield, Virginia 22151.

I'IWW^UBW.WIIWWBJ.IIUWII ■ ^i ^j i/i.'^;i"i,i'!ir'>r^,j,rJ,ji^?r.r.u -F'JF" }?:'*> »\<p?v*rT^l^n^y^'nr^^^^^'^'^m^^?mT'*'yT'^l*'l

Table of Contents

0. Introduction, Notation, and Organization 1

1. Modelling Computing Devices and Computations by-

Binary Relational Algebras 11

II. Simulation and Categories 16

III. The Relation Computed by a BRA 26

IV. Sonantics of Programming Languages 29

V. Compilers are Homomorphisms 56

VI. Semantics of BRAs is a Homomorphism 14.5

VII. The Compiler Composition Theoran 5k

VIII. The General Plan for Simple Proofs of Compiler

Correctness 65

IX. Proofs for Examples SS, BE, AE 69

X. Stores and Assignment 8l

XI. While Statements glj.

XII. An Exemplary Synthesis KX)

XIII. Conclusion JJ_6

References 22h

ii

Md^MMmmmmm^

£

m

0. Introduction, Notation, and Orgemization

The aim of this work is to contribute to the mathematical theory

of programming language semantics and of translations from one programming

language to another, and in particular to bring within nearer reach the

feasibility of proving the correctness of rules (compilers) for performing

such translations.

McCarthy [McC 62] appears to have been the first to have drawn

attention to the possibility and desirability of making such proofs, and

the approach to be followed here agrees with the essential points of

that which he proposed: that a program should be regarded as denoting

a partial function; that a compiler is a program-valued function of

programs whose responsibility is to give a result denoting the same

partial function as did its argument ("same", that is, after making

allowance for any necessary encoding of program data and decoding of

program results); and that in all reasonable cases both the denotations

of programs and the effects of compilers can be given by definitions

which follow the abstract syntactic structure of the source language

programs, yielding the denotation or translation of a complex program by

some operation on the denotations (respectively translations) of its

syntactic constituents.

The development of general techniques for proving properties of

algorithms, in particular the equivalence of two algorithms, as initiated

by McCarthy [McC 65] and carried on by Floyd, Manna, and many others,

has provided us with a sufficiently powerful theory to make us expect

that if we are given an algorithm for compiling from one language to

another, together with algorithms (interpreters) for finding the result

MMM^M^M^EmmMm^

TT".1» j w; • .■ v.' r:^."'t-j 'jp-yii^™^. .■ x'I>N.<P.«..7 .^.I^^ .J,._V._, ,7^.j,^^aippji^i v «fia(ii(^v^^v^^f^v^^^^^^i^^^^^p^p^ijm

v.

of a prograjTi applied to data in both languages, and algorithms for

transforming between source and target data representations, we should

in principle be able to find a proof of the correctness of the ■•.ompiler

(supposing it to be in fact correct). Such a proof was actually carried

out by Painter [Paint 67] for a small language. Encouraging as his

result is, it may be said that it also provides a warning that the bane

of computer programming -- the natural incomprehensibility of large and

even medium-sized programs -- carries over in full force to proofs about

programs.

It is natural to hope that if we can find more structure in the

compiler-correctness problem than in the general equivalence-of-algorithms

problem, we may be able to give to compiler verification the characteristics

of a typical area of applied mathematics, in which small results with

intuitive content are proved once and applied many times, and to liberate

it from the incomprehensibility and duplication of effort so characteristic

of programming. The main goal of this thesis is to demonstrate that this

hcj^c can to a considerable extent be realized.

In the author's opinion, the essentiaT first step in structuring

the compiler-correctness is to reject the view that the semantics of a

programming language may be given by any algorithm for getting a result

from program and data together, and instead to demand the literal

assignment of meanings of whatever mathematical type may be appropriate

-- generally functions or relations of some kind -* directly to programs

and program constituents. Having made this decision, then even

regarding a language and the associated meanings merely as sets, we

have that proving a compiler correct is always proving the commutatlvity

of a square diagram of the form:

-~s T —u—a-^p - (—^ 1.1 i—rp- 1 JA".^1 -■ -■* ?,J-^ '

source

i.-ernan tic
function

source
meanings <-

(•Dtiipi 1 jnc;

I'lind. ii in

decoding
function

target
' langimge

l»ttrget
semantic
function

target
meanings

Insofar as possible, we would like to consider the mathematical

properties of the functions indicated by the four arrows, rather than

properties of any particular programs for computing them. To succeed

In this aim we will have to be able to give mathematical descriptions,

rather than descriptions by programs, of these functions. (And indeed,

in applications where the correctness of an actual compiling program

must be proved, an additional step, ignored in this thesis, will be

needed: a verification that the compiler does compute the compiling

function which we have discovered to be correct.)

We can do better than to regard the corners of the above diagram

merely as sets. We shall make extensive application of the idea of

Burstall and Landin [Burs 69], that it is possible to recognize an

algebraic structure in the source language, and to impose corresponding

structure on the other corners of the diagram, in such a way that the

arrows become not merely functions but homomorphisras, and many results

depending on an induction on the structure of programs can be obtained

in a uniform way as applications of basic results of (universal) algebra

about the existence and uniqueness of homorphisms.

täti&tä^i^^

1 -^.T .-^.T ^T^ ^."I^-TT—Tl^-TB^7« T^tf^T^ , L'VI Mjj.n» ■ j i . r .TW—i»z">. ■ »•■' i •, n_ i». ^JI ■; i■%,'". <-,i_'i.'^ »»i»»»! i-i "'ii» u IJI IJH

A second application of algebra to the theory of computation of

which heavy use will be made in what follows comes from Landin [Land 70]

The idea here is that each single program can be regarded as an algebra,

of which the operations may be taken as partial functions, or somewhat

more generally as relations; likewise any suitable interpreting machine

for a language can be regarded as an algebra of the same sort. The

possible computations of a given program on a given machine then become

a product algebra derived from the program- and machine-algebras.

Landin's idea will be developed here only for the case that all

operations of program- and machine-algebras can be taken to be binary

relations (or unary functions). So restricted, its applicability is

certainly much more limited than is that of the programming-language-as-

algebra model; nevertheless, it makes possible a uniform treatment of a

surprisingly large class of examples. (Our terminology will be to

apply the abbreviation "BRA" -- for binary relational algebra — to

these program- and machine-algebras, and the phrase "operator algebra"

to general language- and meaning-algebras.)

The specific techniques of compiler verification we shall develop

will be primarily applicable to a situation in which the source language

is an arbitrary operator algebra, but the target language, as well as

being in its entirety an operator algebra, will also have its individual

programs be binary relational algebras. It is not claimed that all

instances of compiling can be adequately modelled by this scheme; rather

our restriction on target language-algebras biases us towards modelling

compilation into low-level languages. The modelling of target programs

by BRAs has a claim to be called natural to the extent to which we

^fe::;;-;:;-:::^^

jw.irwi"»^'» U'ivm.'uw. ■ Twrrrrwr: J j - j J ji j-i'j •'. ji'i'»^^.'^'.' ■-• ■;■ i _■ ^ i-.» >';• '_• ■■;• ■ _i ■_« ._i «^i Fm'ji "J p_f ■T»T'»TT"U 'U"UT1'^n

believe that the ultimate fate of any program is to be obeyed by a

sequential machine (a concept which does not exclude the sort of

n^n-deterministic machine underlying Dijkstra's concept of co-operating

sequential processes).

The development here of some properties of binary relational

algebras will be cast in the framework of very elementary category

theory. The exposition of those elements of category theory we shall

need is intended to be completely self-contained, and in any case does

not go beyond, or even up to, the limits of what is contained in

[MacL 67]. It is perhaps necessary to defend the introduction of

terminology from an area of mathematics which may be unfamiliar to

most readers. The author is convinced that the concepts of simulation

and of running a program-algebra on a machine-algebra are essentially

category-theoretic notions (an insight which he owes to [deB 69] and

which also appears in somewhat disguised form in [Burs 72]) and

believes that recognition of this fact will make them better understandable.

All the same, the reader who prefers to skip Chapter II, from Definition

II.2 onwards, and to ignore all mention of categories and functors

thereafter should find all the results of later chapters stated in

"plain language" and, except in Chapter VI, should still be able to

follow the proofs.

Notation

A great deal of the notation used in what follows is adapted from

MacLane and Birkhoff, Algebra [MacL 67].

i^g^-^^

V,"V l-'"' ■Jm' ' -—^^s—*' »-'■f.: WUWJ'W'J-'JWL»'.""«" -•'J ■ii^ttP>r^l»^u:iin liju. IBJI ^i|n.,i|^^T^n?^pw»w^^»»^^wr^y^^^»l^i^»^i^^l^p^^^^p»

> ■'

Sets: Upper-case Roman and Greek letters are used for names of

sets. For set constants, we use curly brackets and commas to give a

set in extension, as [1,2,3] , and curly brackets with a vertical bar

separating bound variable from characteristic property to give a set

in intension, as (x j 0 < x < U} ,

Operations on sets; The signs n , U , - , and c denote set

intersection, union, difference, and inclusion, respectively. We also

use n , U , c between relations of the same type, meaning that the

set operation is to be performed on their graphs. Set membership is

_ written € . Cartesian product and disjoint union of sets are denoted

respectively by x ■-d Ü .

Logical operations; Within formulas, we denote the usual truth-

functional operations by the underlined words and, or, not, implies,

iff, quantification by for all, for some, and truth values by true,

false.

Junctions; By either of f: A - B or A - B we express that f

is a function with domain A and codomain B . Note that two functions

are to be considered as equal if and only if they have the same domain,

same codomain, and same graph.

We also use the notations f: A - B and A - B when A and B

are objects in any category and f is a morphism between them (a situation

which includes the ordinary notion of a homomorphism between operator

algebras).

Partial functions: By f; A - B we express that f is a partial

function with domain A and codomain B .

6

^a^toi^atoi^iitotoa^^ v-:-^

—TTTT-n »«»»■r>"»'.:"T 7 "'. R'V » L1 • .■» . • '.' • J q '."■ a"

V, . leatlon; If f is a function or partial function, we

denote the result of its application to the argument x by f(x) ,

fx , or even, if no confusion can arise, by simply f x . (However,

subscripts, together with primes, tildes, and the like, are also

sometimes used merely as distinguishing marks.)

Relations; By f: A -^c B , we express that f is a binary

relation on A to B , i.e., that it has domain A , codomain B ,

and graph any subset of the Cartesian product AxB .

We may also use the notation (A -♦ B) (similarly (A ^ B) ,

(A -K B)) in isolation to denote the set of all functions (similarly,

partial functions, relations) on A to B . It follows that the

sign : , as used so far (but beware, not subsequently) could be

displaced in favor of the sign e .

We consider that (A - B) c (A - B) c (A -K B) . The notation

described in the following paragraphs as being for relations therefore

applies equally to partial functions and functions.

if f: A -K B , arA , brB , then we express by

f: a M b

that f relates a to b , i.e., that the pair <a,b) is an element

of the graph of f , or what can be also expressed, if f is at least

a partial function, by f(a) = b .

Composition; If f; X -K Y , g: Y -* Z , then we denote by

either g«f or f;g indifferently the composite defined by

f;g : X -K Z

with

t^";—•-■' '■-■■-• ■-■■■■

yy' '.T-■."•>> :;y::>::-^:v^m-^Mi

^
JN^

I I
"Ci-:

f ;g : x i- z itt for some yrY, f : x •-. y and g : y H z •

If f and g are partial functions we have

S°f(x) = g(f(x)) = (f;g)(x) .

Iteration and converse; If f: A -K A , then f^ denotes the

k-fold composition of f with itself. This notation is consistently

extended to all integral powers by taking f to be the identity

relation on A , and f" to be the relational converse of f^ ,

i.e., f : a' »-a iff f: a ►-a' . The notation f"1 to denote

the converse of f is also used for relations with arbitrary (possibly

different) domain and codomain.

Insertions; With every instance of set inclusion, such as

A c B , there is associated a unique function i: A -• B with i: ana ;

this is called the insertion of A into B . We may name the insertion

in passing by writing, e.g., i; A c B .

Restriction; If i; A c B , and f: B -* C , we det^te by f 1 A

the composite foi , and call this the restriction of f to A .

Conversely, if D c C , we denote (f-1 1 D)"1 more briefly by f J D ,

and call this the cut-down of f to D . Moreover we shall write

f ^ D as shorthand for (f ^ D) J D ; when no confusion can arise we

also refer to this combined restriction and cut-down simply as restriction.

Special sets and functions;

N denotes the natural numbers {0,1,2,...} .

k denotes a standard set of k elements, namely [0,1,...,k-l} ;

in particular, 1 denotes [0] . Exception; at some places the

^rJ^y^i^^d^C;}^^

•" -- ^ ^ -. ^.,'V'^.-V ^.'V".'». ' ^. ■ •. ■."'.'V1 ■."■.■."■.•■. I", ■'■ ■.! I ■. I ^"^w^TWWT^^^^^l^^^^p^j^^j^I^^Bpj^P

explicit convention will be made that 2 denotes the set

[t,rue, 1'alge] .

The Identity function (equality relation) on a set A to itself

is denoted by 1. . J A

Other alphabets; Underlined Roman capitals (as, A) will be used

for general operator algebras; underlined curly capitals (as, a) for

binary relational algebras (BRAs). Plain curly capitals will be used

for categories and functors (as, tf)> except for the following five

special functors (defined in Chapters II and III): ® , © > 2 ,

One , ac .

[|lunctions and homomorphisms will be denoted by lower-case letters,

generally Roman for the former and Greek for the latter. Note, however,

that our definition of an algebra will make it a function from its set

of operators to its set of operations, so that an applicative notation

such as for example A will indicate the operation which the

operator cu denotes in A .

Unanalyzed set elements will be named by any convenient symbols,

for example x , S , to , + .

Organization

The first half of the thesis. Chapters I-VII, is theory; the second

half is application.

In particular, Chapters I-III develop the theory of binary relational

algebras as models for the concepts of program^ machine, and computation.

Chapters IV, V, and VI introduce the concept of operator algebra as a

^a^H^:^^^^

M

common model for a programming language and its set of meanings, and

present examples of modelling both programming language semantics and

compilers (in Chapters IV and V respectively) by homomorphisms of

operator algebras. Chapter VI assimilates the notion of the meaning

of a program obtained by regarding it as a BRA to the notion of

semar. ? homomorphism- In Chapter vil a theorem is proved whwh wlU

allow a correct compiler for a complex language to be assembled from

compilers for simple languages each of which embodies only a single

"feature".

The second half of the thesis, Chapters VIII -XII, is devoted to

exemplary proofs of compiler correctness. Chapter VIII may be considered

a second introduction; it sets out the method to be followed in the

applications. There are three proofs in Chapter IX, one each in X

and XI -- all these for simple, one-feature languages — , and in

Chapter XII the theorem from VII is applied to obtain a correctness

proof for a (somewhat) complex language.

The languages considered in Chapter IX are referred to as Examplef

SS, AE, and BEj they will already have been introduced under these names, and

their semantics and compilers defined, to illustrate the development in

Chapters IV and V.

The following is a suggested strategy for a first reading of the

thesis: Skim Chapters I - VII very lightly, attending only to the

informal exposition and the examples. Read Chapter VIII as soon as

possible; then study one or more of the proofs in Chapters IX - XI,

referring back to Chapters I - VI for explanations of concepts as the

need for them becomes apparent. Defer Chapters VII and XII until last.

10

,^ fc1^ i. f i**^'.* •',' if •"* J*"*>"" »"V •*'' '•"' '•*' •*< *■' •'*-''' •" •'" '"V ^'r)•'{.'*'" "^ *"' '-"* yp •■"' »"">':■ i*f ■.',:-'" v"v yy '►"'■„yvvr>"rJ-"-" '•"-',^"'J'"^J,"*J« "J^ ^* -T1

im

I- Modelling Computing Devices and Computations

by Binary Relational Algebras

The present chapter will give the basic definitions, with examples,

of .he algebraic model of computation due to Landin [Land 70].

Definition 1.1: A Binary Relational Algebra (BRA) /? is a function

tf: T -- (jtfl -* |^|) associating with each element (operator) of a set r

a binary relation (operation) on a set |^((the carrier of (2) .

To get hold of the right end of the stick, one may do well to keep

in mind from the start the informal notion of a computation of o as

being a sequence (finite or infinite) a ^ a., n a» 1- ... , such
U 70 1 71 2

that a \ a. H a .+1 .

Example 1.1: A finite-state machine (not that the restriction to

finitude has any particular significance for us) is normally taken to

be a function M: IxQ -Q with Q the set of states and I the alphabet,

We can just as well view this as a BRA ^: I - (Q - Q) . The relations

here are special in two ways: by being (partial) functions, and by-

being total. We distinguish the first of these special properties by

its own name: a unary function algebra (UFA) is a BRA of which all the

relations are partial functions.

Example 1.2; A flowchart is ordinarily written as a graph with labeled

nodes: some nodes (function boxes) with one exit edge; others (predicate

boxes) with two labeled exits; others still (halts) with none. We wish.

11

|
■„v.

following a device of Karp's [Karp 59], to keep the same shaped graph,

but transfer the labels from the nodes to their outgoing edges (from

each predicate n we must somehow derive :wo distinct labels, say n

and n , for the two departing edges). We then have a BRA, with the

set of nodes as carrier, mapping each label to the set of ordered pairs

of nodes connected by a so-labelled edge. It will by its construction

observe the rule that each node is related to at most two others, and

if to as many as two, then by virtue of a pair of complementary predicate

labels.

There is, as observed by Landin [Land 70], a one-to-one correspondence

between BRAs and edge-labelled directed graphs without duplicate edges.

In fact, by taking some liberties with the "barred arrow" notation by

f
which x N y indicates that y = f(x) , we can claim edge-labelled

directed graphs, with the edges drawn as barred arrows, as ready-made

notation for presenting small finite BRAs. E.g., if we write:

T

$

= a xn

we indicate that 2 is a BRA with carrier jj , and with at least the

cat of operators {n = 0, a := 1, n = 0, a := axn, n := n-1} each

denoting a relation : 5 "^ 5 — as it happens each of these operations

relates only one pair of carrier elements -- and possibly with other

operators as well, all denoting the empty relation.

12

-:-:::-::-- , ■ M^:-:;y-::tf y-::-;;^

Running one BRA on another;

Given BRAs which in some way model a program and a machine, one

would expect them to determine the computations obtainable by running

the program on the machine. We shall make the seemingly over-general

definition of an operation ® for producing from two BRAs a third

which, as will be seen, has a claim to be called their Cartesian

product.

We first define the Cartesian product of two relations: if

R:A-KC, S:B-xD, then R xS: a,b-xc,d iff R: a H c and

S: b H d . I.e., if we consider the graphs (denoted here by an over-bar)

of the relations: R = [<a,c> | R: a H c} ; S = {<b,d> | S: b H d] , then

the graph of R xS is just the set-theoretic Cartesian product of the

two graphs, with each component quadruple rearranged: whereas

RxS = {(<a,c>, (b,d>) | <a,c)eR and <b,d>GS} ,

RxS = (<<a,b>, <c,d>>] <a,c)6R and <b,d)eS} .

We are now ready to define a product on BRA's:

Definition 1.2: If ^ and ß are each BRAs with operator set r ,

then tf ^ £: T - (|tf| x Ifll -* ^ x |/?|) is given by (a ® ^) = Ä, x^, ,

for 7er .

Intuitively, the computations of g ® Q are just those common to

(2 and ß : the product can do whatever both its factors can do.

Example I.5: Finite state machines as above; take an input sequence,

13

i!

p q r »j
e.g., the string pqr , to be an UFA • £» • H • M # (we use dots to

indicate arbitrary, distinct carrier elements when there is no occasion

to name them); then the product of a string with a machine gives all

the computation sequences generated by presenting the string to the

various states of the machine.

Example l.h: Flowcharts and their interpretations. An interpretation

I is an assignment of unary functions and predicates over a domain

(of states) to function and predicate labels; take an UFA S with

the domain as carrier, J: f H If ; «9: p - {x M x j I (x)} ;

S: p -> [x H x | not I (x)} . Then if p is a flowchart UFA, as above,

the product ^ ® j relates each (node,state) pair to its successor

pair.

The products in Examples 3 and 1+ have a property stronger than

being UFA's: each element of the carrier is related to at most one

other element, even considering all the relations together. We may make

the definitions:

Definition 1.3: E ^7 = U tf . for any BRA ^ with operator set r .
'/er 7

Definition l.h: A BRA & is monogenic iff E £7 is a partial function,

i.e., iff Ztfe (Itfl - 1^|) .

Generally speaking, the idea of deterministic computation will be

modelled by monogenic BRAs; however, most of the theory will apply

equally to mono- and poly-genie BRAs, and so may throw some light on

(one notion of) non-deterministic computation.

Exam -BRA ample 1.^; Turing Machines. Define T^ > the Turing machine-

with alphabet F , to be an UFA, f: F xF x [left, right] - (Tape -Tape) ,

Ik

©

a^fä^:;:::;;;-':^^^

where Tape = (W- F) x F x (N-F) , as follows:

^g,left: a'f'ß H aaoMO)fßop U {0 M g}

^g,right: ^^ß^^pUtO Mg},ß(o),ßoa

where

ü: ^ -N: n •- n+1

and

P: ^/ =• N: n+1 M n .

A (nondeterministic) program </ for TF is an arbitrary finite

C UFA /: F xF x [left,right 1 - (Q - Q) , with Q a finite set of

states.

A product p ® r is then a particular non-deterministic Turing

> machine with alphabet F as ordinarily defined.

15

tätä^AK :^-mm^üi^

II. Simulation and Categories

In keeping with our idea that a BRA defines the class of computation

sequences it can perform, we want a notion that of two BRAs a and ß ,

B simulates ^ if ^ can perform any computation that ^ can-

Formally we define:

Definition II. 1; A simulation of a BRA ^ by a BRA £ with common

set of operators r is a function <p: j/?] - |/|| with the property,

for all 7eF ,

or equivalently,

or equivalently,

Üy ^ «P;^;«?"1

(these equivalences because 9 is a function, and so we have

(P" ^S1!»] and l\M E'P^"1 •

We hasten to observe that there are some very silly simulations,

r
e.g., the BRA i_ , with

simulates all BRAs with operator set r .

Depending on the parti -ular pplication, we shall generally want

to prove more than Just simulation, for example, that tp is invertible

and B is monogenic, before we think we have a simulation in the

intuitive, useful sense that the simulating object will really "do the

work" of the simulated one.

16

iii^lMi^^ii^^

Categories;

We next introduce a few of the notions of category theory, in order

to facilitate the development of the theory of BRAs and simulations.

Definition II.2: A concrete category (3 is a class of objects 0bJ((3,)

together with two maps: one, U , associating with each XeOh^C-)

a set (the underlying set, or carrier) U (X) , and a second, Mor_ ,

associating with each pair of objects X,Y of (3- a set of functions

(the morphisms) with domain U (X) and codomain U (Y) , (briefly,

Mor (X,Y) C (U_(X) - U^(Y)), and satisi^ing the following two axioms:

CC1: For all XGObj(c) , 1^,^ c Mor (X,X) ,

CC2: For all X,Y,Z e Obj(fl.) , if (peMor(X,Y) and A e Mor_(Y,Z)

then i|roqp eMor (X,Z) .

We extend the ordinary notation for functionality by writing cp: X - Y

to express that cpeMor (X,Y) , and we denote X^/y-s. by 1^ . The

simplest example of a category is, of course, the category gns of sets,

where U is simply the identity function, and Mor(X,Y) is the set

of all functions from X to Y . Another easy example is the category

Rein of binary relations on sets to themselves. If R: A-^c A is such

a relation, we take U ■, (R) = A , and Mor , (R,S) (supposing

U(S) = B) to be the set of all functions cp: A -♦ B satisfying

P:cpc(p;S (or equivalently, since cp is a function, satisfying either

of cp" ;R;q) c S or R c cp;S;q)~).

The axioms for a concrete category are easily verified for Rein .

17

'"^MM^iMMiMii, :jii&v^:^^:: :v :-\V:V:NC^>:\^^

Our aim is to discover that the BRAs with any given set r of

operators form a category, Bra with simulations as morphisms.

However, to facilitate the subsequent development, we shall allow this

fact to emerge as a special case of the following general construction

for building new categories from old:

Proposition II.1. if n is a concrete category, and S is a set,

then C is a concrete category, where p8* is defined as follows:
rsi

The objects of (3l are functions A: S - Obj(c) , with the special

property that for all s,teS , U(A(s)) = U(A(t)) = (by definition) U(A) ;

i.e., an admissible function has for all the objects in its range of

values the same underlying set. The morphisms of cJS^ between two

objects A and B are all those functions qp: U(A) - U(B) with the

property that for all seS , E c Mor^(A(s),B(s)) . ^S] is readily

verified to be a category.

The category ^ra of all BRAs with operator set r , and with

simulations as morphisms, is now seen to be exactly the category

RelJ1^ .

We next define the important notion of a functor, which is

essentially a homomorphism of categories.

Definition II.3; A (covariant) functor 5: C -* £ from a category (J

to a category £ consists of two mappings (the same letter f is by

convention used for both), one (called the object function of y)

giving for each XGObj(C-) an ?(x) e0bj(3) , and the other (the

mapping function) giving for each (p: X - Y an 3if((p): gr(x) - gf(Y) ,

such that the following two axioms are satisfied:

18

F3

s:

7Ü

F1: ^ * V)
F2: ?(i|fo(p) = y(f)»gf(rp) .

Pictorially, the axioms require that any instance of the following

diagram should commute:

?(<P)

The following easily verified proposition will provide a convenient

method for obtaining functors from a category of BRAs to itself.

Proposition II.2; Any functor $: (l, - £ yields a functor

?[S]: e[S] ~ J-S] given by 5[S](X) (s) = gf(x(s)) and y[S]((p) =?((?) .

We shall want functors of more than one argument, and for this

purpose we introduce the Cartesian product of categories. Intuitively

(and even formally in the theory of abstract categories, which bear

just the same relation to concrete categories as abstract groups do to

permutation groups) the product C-x^ of categories & and £ has for

objects ordered pairs <C,D) of an object C from C- and an object D

from 3 , and for morphisms ordered pairs <<P,i|r>: (C,D> -* <C,,D,> , where

<p: C -> C and ty: D -• D' , and with the obvious component-wise

composition. To get an isomorphic concrete category, we must fiddle with

this construction slightly; it is good enough to take the disjoint union

19

"4t&Rr.I/M^i£ff^ L> w-i^.^uvi^. .> ta..cd

U(C) OU(D) for U(<C,D» , and if U(C) iu(<C,D» i U(D) are the

injections into the disjoint union, i1 , j' similarly for (C^D') ,

then instead of the ordered pair of functions (cp,i|r) , we may take as

a substitute concrete morphism that function in (U(<C,D>) -»UUC'^D1»)

with graph (i" j(p;i') IJ (j"1;^^') .

A bifunctor, or functor of two arguments is now an ordinary functor

defined on a Cartesian product category.

It is easy to check the following distributive law:

Proposition II.j; (C-X^)^ S (^S] ^[S] _

(To be pedantic, isomorphism (=) of two categories may be

defined as the existence of an invertible functor between them.) From

this we have immediately that the statement analogous to Proposition II.2

is valid for bifunctors.

We shall have occasion to define a number of functors on concrete

categories. Most of them will be related to functors on the category

of sets, in such a way that the labor of proving them functors can be

greatly reduced by the use of the following proposition:

Proposition II.U: Let 5: ens - fins be a functor on the category of

sets to itself. Let G» ^ ^ be concrete categories, and suppose £

is a function: 0bJ((3,) -Obj(^) with the properties

(i) UU(X)) -?(U(X))

(ii) For (p: X -Y in Q, , y((p): ^(X) - ^(Y) in ^ .

Then & (with the mapping function of f as mapping function) is a

functor on C to ^ ; we choose to call £ a specialization of g; .

20 ss

WZ^W^^^^^i!<^i^^«^^;^<^'^XJ.^f^^^'A^^^V\^V.AS,«/*■•/<■?,^/. V.\ l"AVIVLW.-I vi vi •u^WKT,«.-^K-, vnov-.u-v*.,.n *** n-.mv -vJj

^

Proof: (ii), with the definition of ^'s mapping function, gives us

that i<9): j^x) - i<y) whenever (p: X - Y . So we have only to check

(a) -^V = ^X) ^

(b) i<i|fo(p) = j(^) oJ(<p) .

But JKV = yCly^) = 1^^^ = \jiMx)) = lMx) , and

For a first application of Proposition II.U, we define the bifunctor

(?) : Rein x Rein - Rein as a specialization of the Cartesian product

functor on sets. (Following [MacL 67], the mapping function of the

Cartesian product functor x: gnsxfins - gns is given by: If

(p: A -A' , t: B -*B' , then (px\|f: AxB -A' xB': <a,b> - <<pa,i|fb> .)

We have, then, only to specify R ® S: U(R) XU(S) -^ U(R) XU(S) . We

shall simply generalize the definition of the Cartesian product mapping

function to read for relations (rather than exclusively for functions):

Definition 11.h: If R: A -K A' , S: B -* B' , then

RxS:AxB-KA,xB'= {<a,b) M <a',b') | R: a M a» and S: b Mb'} ,

and then use this to define the object function of our bifunctor ® on

Rein , namely:

Definition II.5: R ® S =df R XS .

I?'.a have now to verify that if cp:R-.R', ii^S-S' , then

<? ® ^(=df 9 X*): R ® S - R» ® S' . That is, given that R;(p c (p^' ,

S}^ C tjS' , we must show (RxS);((pxi) C (<P x\k) ^R1 xS') . But, as

is easily seen, (R x S) ;((p x *) = (R;(p) x(S;\|f) and similarly for the

right-hand side, and moreover x is monotone for c , hence finally

RxS;(px^ =(R;(p) x(S;t) c (q)^') x (t;S') =(pxt;R, xS' . |

21

i'i-X** vW'-\'- .'• V--"^,.N k>;iV^VLN\.V V> LV 1.V U1I_.-K LVi.-v^>' ^v .v.L^rL-aiiatj*:
m

l/M LTW L-« L-« '-k >.•>< l_f%i !_=-** 1

fr]
The functor 9) , which we also write ® , may be ceen to be Just

the operation of runnin;^ one BRA on another.

A second bifunctor we shall be wanting is a specialization of the

disjoint union of sets; we shall write it © . Supposing

i: U(R) -*U(R) 0 U(S) and j: U(S) - U(R) Ü U(S) are the injections

which copy u(R) and U(S) into their disjoint union, then we specify

R © S: U(R) M U(S) -X U(R) L) U(S) by

Definition II.5; R © S = i"1;!*;! U j'^Sjj .

The proof that if cp: R -« R' and \]/\ S - S' then

cp 0 ijf; R r?) s - R' © S' and that therefore © is a bifunctor on Rein

(and so by Proposition 11.2 on QrsF) is dual to that given for ® .

We may observe that /9ra has an initial object, i.e., one

simulated in a unique way by every object, namely the BRA O whose

underlying set is empty. Equally, there is a terminal object, one which

simulates every object in a unique way; it is the BRA 1 whose under-

lying set is a singleton, say {0} , and which maps every operator of f

to the universal (and also identity) relation {0 M 0} .

We may also observe that there are natural isomorphisms for any BRA (2 :

^ = ^®l , a = a®Q. > Q = a®ö ,

and that up to natural isomorphism, © and ® are commutative and

associative operations, with ® distributive over © .

It is now easy to show that the functors (gi and © have distinguished

(and dual) properties; namely rf® P provides a product object, and

a®ß a coproduct object, in the sense of category theory. The property, that

a®l3 is a product object, may be simply stated as follows: any diagram

22

I

R'^iw" ■■■ ".>.r ■* ^.;. - s • ^ ■ . - ._.-

where p and q are the projection functions p: <a,b) •-♦ a ,

q: <a,b> t- t , can be filled in by a unique morphism at a so as to

conunute. Since we are working with concrete categories, most of this

is already proved for us; it is an elementary result (see, e.g.

[MacL 67]) that the Cartesian product is the categorical product in the

category of sets, that is we know the function a: x M <cpx,\|«) is the

one and only way to make the diagram commute as a diagram of functions.

All we have to check is that the functions p ^ q > and cr actually are

morphisms (i.e., simulations) in /3ra . This is not hard, using that

(2) is a functor. Take Irf ß -* ß > t: ^ -» j_ , and i: ß®X = ß .

(1 : b 1- b , t: a M 0 , and i: <b,0> H b .) Then q = io(t ® Ij ;

hence q: (J®ß-ß . Similarly, p: tf®/?-»tf . To establish o as

a morphism, consider A: Z -• Z ® Z * A: z i-* (z, z> which is readily

seen to be a morphism. Then a = (<P ® ^O 0A ; hence a: Z - g® ß •

The proof that 0@ß gives a coproduct object, that is that

the diagram

23

can be filled in uniquely at p so as to commute (where i and J are

the injections into the disjoint union) is dual to that for C? ® ß

(jliven above.

The product and coproduct properties have an obvious potential

for proofs of the existence of a simulation of one BRA by another: if

we want to show that a product ^ ® £ simulates a BRA Z , we need

only find simulations of Z by the factors of a ® B separately; this

might be easier, since ^ and ^ individually will each be less

deterministic than their product. Dually, to simulate a coproduct BRA,

it is enough to find a BRA which simulates both of its cofactors.

We shall here parenthetically indicate the connection between our

notion of BRA and Burstall's [Burs 72] category-theoretic model of

programs.

It turns out that there are two fairly natural ways of regarding

an individual BRA as a functor, although these entail departing from the

convention which we observe elsewhere of dealing only with concrete

categories. First of all, corresponding to any alphabet r , there is

a category Jr with one object (say 0) such that i» is isomorphic

to r , the free monoid with generating set r . The morphisms of ^

(necessarily all : 0 -» 0) correspond to the elements of r* , that is,

to the finite strings of elements of r ; composition of morphisms

corresponds to concatenation of strings. Also^ there is a category

Ensrel with its objects all sets, but with relations for its morphisms

(rather than functions, as with gns); composition of morphisms is

relational composition. Now it may be seen that to any r-BRA B there

corresponds bi-uniquely a functor B : £ - ensrel , with object function

2k

L^^V.-..:: .V.-.VV, .-■•.-■•.V. -./...••... -.:.•.-■ .•.•.. .>. .y.V

u ha .VI

•'..■•"./{►"•\^y-y-yr\'-"/;'^\v,\>y'y-yr\>^v.>>'-"r">>>>",>\"'''vv *■'•.■-sm

- ' - - - - - - - - -r-j-'f ■.- s- ^--^--.-r^T^ .-'.- ' r'-rr -.•] r:}ir: -rjvvivj \r. «r^^Ji^a^'VT v"jir"l,"ju":vr.^3 T"1".' • J ". ". T^TTTI

IK*

h

$

C-:

fe5

given by /8 I 0 K» |^| , and with mapping function uniquely determined

by the requirement that 13 : y ** B for 7 er .

On the other hand, any unlabelled directed graph H can be made

to correspond bi-uniquely to a category U whose objects are the nodes

of H , and whose morphisms are the finite paths in H . A r-BRA ß

may be regarded as a labelling of the edges of some directed graph H

with labels from r ; hence ß may equally well be regarded as a

functor ß : U - J> , i.e., as a labelling of the paths in H with words

from r .

Our method, when we have a program-BRA ^ interpreted by (rurning

on) a machine-BRA ß , will be to model the situation by forming the

product a®ß. Burstall, less symmetrically, models the interpreted

program by the composite functor ß off •

25

^^^^

^

III. The Relation Computed by a BRA

Informally, what we would like to say is that the relation computed

by a BRA is (some suitable restriction of) its accessibility relation,

which relates two elements of the BRA's carrier Just in case the second

can be reached from the first in some finite number of steps, by the

use of any of the operations. To develop this notion formally, we

first observe that the "fuse operators" function E defined above

(Definition 1.3) is a functor Z: Br&r - Rein , indeed a specialization

of the identity functor. To verify this, we need only check that

for all yc? , ^;(p c (p;^

implies

(U Ä,);<P c (pj(u 8) ,
ye? ' 7er '

which it does, because relational composition distributes over union,

and union is monotone with respect to c .

We next define a functor ^hc: Rein -«Rein (for ancestral),

a specialization of the identity functor, by:

Definition III.l; tfhc(R) = u R^ •

To show that $ic is a functor, suppose cp: Q _» R in Rein with

Q: A-K A , R: B -j(B ; i.e., Q c «P^j«?"1 • Then for each k > 0 ,

we have Q^ c (<p;R;<p" V ' by the monotonicity of composition for

c and because, (p being a function, for k = 0 we have 1 c cpjl^cp"1 .

But since <p is a function, also cp ;cp c 1 , hence

(k) (k) -1
Q c (p;R ; ;(p .So by the definition of #ic , and the monotonicity

of u for c, we have tfic(Q) c cp;tfic(R) jcp"1 , that is (p: ö*IC(Q) -* öhc(R)

26

^j^^r^^^^^^^:^^^i^-:^->v-,fev^/^^ :.' :.:,., •;,. -:Mfe^:V■■;•>;^^:•>^^^j:&^i

r-TT i—- r^v T™ T-sn-^^r^i^.T-^-T^T^: ^-r^^^r^^H ^ *:* *. \t ^w^ r^ . 1? VT^ rTl

As öüIC always produces a transitive and reflexive relation, we

could just as well say that it is a functor on Rein to Treln ,

where Treln is the full subcategory of Rein got by restricting

the class of objects to transitive and reflexive relations only.

r '
We now define the functor ac: Bra. -»Treln (for accessibility)

as the composition:

Definition III.2; ac = ^hcoj; . ,

We also give:

Definition III.3: If ^ is a BRA, with sets S C |^| , T C |^| , ,

then ac(^) 1 S J T is called the relation computed by & from S

to T (or, if S = T , the relation computed by tf on S).

We are now ready to state an almost obvious result. j

Proposition III.l; If a BRA ß is raonogenic, with S C |d?| i T E 1^1 *

and in addition E<7 ^ T = 0 (we are here using 0 ambiguously to

i
denote any empty relation. The equation simply says that the elements

of T are all "dead ends'.), then the relation computed by ^ from S

to T is a partial function.

4

Proof: Let i: S c A and j: T c A be the insertions, and let

q = 1^ • The hypothesis on I^ T now reads j;q = 0 . Then since

•7 is monogenic, q is a partial function for each k > 0 . Let *

r = i;ac(^);j , then we have to show r' ;r c 1_ .

-1 ,, ,, . -m .-1 . n .-1
U U j;q ;i ;ijq ;j m

n>0 m>0 c

_ . -m n .-1
E U U J»«! »1 »J

n>0 m>0

2?

L __ ..,,._.,

 1

-ra n .-1
If m = n , j;q ;q ;J c j;j (since q a partial function)

= h

If m <n , d^^jq^j"1 c j;q;qn-m-1
;j"

1

_. n-m-1 .-1
= 0;q JJ =0

T-P _ ^ . -ra n .-1 . -m+n+1 -1 -1 If m > n , j;q ;q ;j c J;q J";q ^jj -L

. -nH-n+1 _
= J;q ;0 = 0

-1
Hence, r;rc U U 1- » 1-, , as required. |

n>0 m>0 ■L

28

• < .< *■>.*'•**•* \.v.--*' *'\f m i.ai^ (..i ..■■!,■. _a<Lp..v >al ijpn^n^i p ^in>^v^g^;^^^^^i^^^qmp^^«^^MIBH7«W^n^i

IV. Semantics of Programming Languages

The purpose of this chapter is to announce the intention, and

Justify it with some examples, to model programming languages by

t operator algebras, and to give their semantics by homomorphisms to

other operator algebras.

Definition IV.1; An fl-algebra, or operator algebra of signature ß ,

is a function A: Cl -* (J |A| -» |A| , associating with each operator
k>0

ü) in a set Q a k-ary function or operation (k is called the arity

of CD) on a set [A] (called the carrier of A) to itself.

Without formally complicating this definition, we shall assume

that the signature of an algebra somehow carries the arities along with

it, so that when we speak of two Q-algebras, we shall always assume

that each operator in Q denotes operations of the same arity in both.

If we were to be perfectly rigorous, we might adopt some such device i/j

as making the signature a function which assigned arities to operators.

Defintion IV.2; A homomorphism (p: A -♦ B , where A , B are fi-algebras,

is a function (p: |A| -» |B| with the property, for each (üeß of arity k ,

^(^C8-! • •• aj^)) = ^fa0! • • • «Pa-jj) • We will sometimes say, especially

when introducing a homomorphism and its target algebra simultaneously,

that qp carries each operation A to the corresponding B^ .

Plainly for each Ü (with built-in arities) the ^-algebras form a

concrete category with homomorphisms as morphisras, although we shall

not exploit this fact. If
29 |l

so*!

u

m

n . - -KT;-.--.--—i-c-m r-i VTL •T.'T -a -v .-j F-»"-^'-» I-JP xmv^,:w,.^v, i,^ i /i j ^ 11 WVUVU WTVÜ'KUm** V<*r* W'l V^-^l^ 1^

Definition IV.?; Of two ^-algebras A and B , B is a subalgebra

of A (I < A) if |B| c |A| , B is closed under the operations

of A , and for all cueO , ^ = ^ I |B| J JB] , where k is the

arity of to .

Wi Definition jy.U; A set X c [A] generates an algebra A if the

elements of |A| are Just the finite combinations of elements of X

under the operations of A . It is readily shown that any X c JAJ

generates the smallest subalgebra of A containing X , that is, the

intersection of all such subalgebras of A .

Definition IV. 3; An ß-algebra is the word algebra, or free anarchic

algebra, on a set X (symbolized by W^(X)) if W^X) is generated

by X and moreover every element of W~(X) has a unique expression

as a finite combination of elements of X .

In effect, the elements of W^X) are Just the expressions built

on X with the operators in Q , and may conveniently be taken as some

standard set of strings over X U ß , e.g. the Polish postfix expressions.

We now present a basic result of universal algebra, which plays the

role of an induction principle in reasoning about algebras and horaomorphisms,

Proposition IV. 1: (Unique Extension Lemma,' Part I.) If f: X -> |B|

is a function, with B an ^-algebra, then there exists a unique

homomorphism f: WQ(X) -» B with f ^ X = f .

Proof. Suppressing explicit use of induction (as indeed was done in the

definition of the word algebra) we see that the unique expression for

50

I

. i.Tmr i.-»rrv T^T«--^-i^-r^-r ^. 1 «. ' ^ I . ■ 1. " H - . ■■ ■» . j ,., ■■ n . r, ■.-, , . IJ . ,. -1.1 . J . J I a , J » ,n ^f IJ (j vi | p |iVI | fljll, I | ^ll^^y^TP^^^^^p^^^^^l^M^Bp^PI

^

each element w of W^x) as a combination of elements of X gives,

via repeated use of the property of f , that it must be a homomorphism,

a unique way in which we must compute f(w) as a combination of images

of elements of X under f . Because we are never required to compute

f(w) in two ways, the function f certainly exists.

Proposition IV.2; (Unique Extension Lemma, Part II.) If A and B

are fl-algebras, X generates A , and f: X -» |B| , then there is at

most one homomorphism f: A -> B with f 1 X = f .

Proof. Consider the diagram:

Wrt(X)

i
■♦B

(Here ^ , f are as asserted to exist by Proposition IV.l.) First,

any f must satisfy f.^ = f , because f.^s ^(x) -. B is a homomorphism

agreeing with f on X , and f is the unique such homomorphism. Second,

lx is a surjection, because X generates A , hence 1^ is right

cancellable, hence foj^ unique yields f (if it exists) unique.

Now for some examples of programming language fragments, with their

semantics given by homomorphisms. These examples will be carried on in

later chapters.

Example SS; Language SS(v) (for "statement sequences") is the free

semigroup over the vocabulary V , with one binary operation, concatena-

tion, denoted by the operator D . The algebra of meanings consists of

51

I

' -' .■ ." ." V J- .- .- .- .-'."'v-r- -j- -.--w- r-r- ~. ~, I

LBJlr^^Z^^.Jll^^^Jt^..^^.>J;...->-.>-.".-!.';..'; .:,.• .-.• .'-..•■^'r.^V-V ■/■".•• V- .■•.'.-.•.-- .•r".V'.--^>'. r:.'-"..',^;.. iv
,;.."^--\ , ' 'V-V. -' ■^'l:'-'^- I'd

. ^- 1 ir ■ ..*r*T t^^ _ .r w- .r ^■•- j--^- T ^^v~-^y1^Trr'Vr: 7-T»" -■ ' »-■ VT .■,. ■f\r. ." ' T", ^'.' K-J •" »■' IT ' ^ - T ' - ,• *,":' TJ •" ■ ^'^

^ functions (we could if we chose take partial functions or even relations)

on a set Q, to itself, with the operation of functional composition-

Given any "interpretation" i: V -» (Q -> Q) of the individual statements

as functions on Q, to itself, we take for the meanings of arbitrary-

sequences values of the unique extension i of i to a homomorphism of

^' semigroups. The basic property of the free semigroup, analogous to

H
that of the free anarchic algebra, is that this extension is always

possible.

Example AE; Language AE (for "arithmetic expressions") is simply

WQ(X) for any set of operators Ü and set X of what we call

"variables". The meanings may be in an arbitrary ß-algebra A , and

the meaning homomorphism is of course uniquely specified by requiring it

to extend a given map or "environment" i: X -» |A| . To call these

arithmetic expressions merely follows the example of Burstall and

Landin [Burs 69], and reflects the progreuiiming tradition that operations

of arbitrary arity are commonly available only for use with numbers.

Example BE ("Boolean expressions"): This is just a special case of

Example AE which we will want to consider later, got by taking

Q - [A, V, 3, —1] . There are two possible meaning algebras for BE

which we shall find of interest. The first is just the two-element

Boolean algebra B2 , that is the set {true, false"} furnished with

the classical truth-functions and, or, implies, not. The second is

McCarthy's three-valued logic B5 , with carrier [true, false, undef] ,

whose truth functions are most perspicuously defined by first giving a

truth table for the conditional operator:

32

BMBmBM^^M^^MM^^^^^^^^^^Mmm^mm^^m

r»-. -.. < • '• .«■.,-,,..,., .,.,._ K'irVK'f.'KiWK'K"***. K't."*.\^T^^*^^TV^l7^^TV1!^^

it p then q else r

true

false

undef

q

r

undef

and then defining the more traditional connectives as follows;

p A q =,„ if p then q else false

p V q =,f if p then true else q

p 3 q =,„ if p then q else true

-,,. r£ p then false else true .

In either case, the construction of a meaning homomorphism precedes

just as in Example AE.

fl-

An objection which has been raised to algebraic semantics as

presented in [Burs 69] is that it is unsatisfying to have the meaning

of a program available only conditionally, only after an interpretation

for the free variables has been supplied. One would like to find

meanings which may be assigned to programs and their parts in isolation

from interpretations, environments, or the like — formal replacements

for the idea of "just what we understand by a (piece of) program". This

want can indeed be supplied, and that without abandoning the algebraic

approach to semantics, as we shall now show.

Given any set X and any Q-algebra A , we may define an algebra

of functions F (depending on X and A) with carrier ((X -* |A|) -» |A|)

and operations given "pointwise" by ^(f-, • • • fk): * ** ^(M1) • • • AjU)) •

55

"Si

toM -i^M^MMj^^ <^MMMMä> •' ^ " - -M^mi-MMMMäM
[5-1

^.JWi.-»T.TiU^ V~» 1.-» r^S T^\~ \ -^ T, TT-T \ ~\\^'m r-^Tl ^H "_ '. "-'l

There is a natural homoraorphism $: Wn(X) -» F , namely the

unique extension to a horaomorphism of the mapping cp: X -» |F| defined

by

<p(x) : It-* i(x) .

We may also define, for each i: X -» JAj , an "application" function

app.: |F1 -♦ |A| , given by app.: f»-* f(i) • We then have the

following easy proposition.

Proposition IV.3: Any horaomorphism JC: WQ(X) -• A factors through F

namely « = app J xo$.

Proof. First, it is immediate that app. is a horaomorphism : F -» A ;

we have:

= 40(fi(i) ••• V1)) >

by definition of F . Second, app * »$ agrees with « on X : u

x H [i M ix} | !—M(X)

But n is the unique homomorphisra that agrees with n on X ; the

composition of homoraorphisras app * y0$ must be the same as « . |

Observe that in the case of languages which permit binding of

variables, we may not have the option of supplying a "parameterized"

meaning horaomorphism for each environment, but may be forced to take

functions of environments for meanings if we are to assign a meaning

to every phrase.

5^

I-..^'-I.J-^T -JT^V-I -_-! "u T-v i"in -. -w ^ ■ v i-v ■ ■% '. ■• L-i !%■ L <■ . •'. •■■. «T*1- ■ '. ■ - • I " I. ■■^■■I. »"J" l•., •■. ■ ! ■_t"T1'^^^^f'^'^^^**,^^"I^V,?^F*T',V^F''lPWf>PPllf

An informal sketch of a possible algebraic semantics for the

\-calculus will provide an example of this situation. We take for

granted the existence of a suitable domain D of denotations for
00

closed \-expressions, as constructed by Scott [Scott 69]. The aim

here is to present this denotation mapping as a restriction of a

hononorphism $ which assigns meanings to all \-expressions, closed

or with free variables. We take A(X) , the \-expressions with

variables from the set X , to be a word algebra, with one binary-

operation "apply" and a separate unary operation "abstract on x "

for each xeX . The algebra of meanings has carrier (X - D) - D .
00 00

As in Proposition IV.3 $, the meaning homomorphism, will be the

unique extension of the function <p:X-((X-.D)-.D) given by

(p(x): i H ix . Also, as one would expect, the application operation

in the algebra of meanings is obtained pointwise from application

in D^ : f(g): i H ^(g.^ • For the abstraction operations, however,

we require an effect which depends crucially on environments, uamely

abstract (f): i ng , where g: d H f., for d€D , and finally i'

is an environment like i except that d has been bound to x , that

is:

i': y H if y = x then d else i .
— y

We note that $ carries closed X-expressions to constant functions in

(X - D) - D * i.e., effectively to elements of D , and so we have

our original denotations back again.

55

t------ •- --^-■---■- - -■-•-■. ■.■,■■■■..■. ...v ..; .-,.--.,•. .■ ■•^-,:..:..v.v..-. ■■;.■.•.■•.-•.••■•■•■•.•. ■•,vvv_v.-.-3

i——y ■■■■ s—^--^--r ■jprT IrT .■ «r^ 7 j~ ^ J^ ^" n , ,^ ,r.j >r^ "•n ».T T* ' 11 p 'w« u ■ D p i P v i'v * u ■ u ■ v^i"* L^'niiirwr^TV^w^^^

V. Compilers are Homomorphisms

We ahall model compilers by homomorphisms from one programming

language, qua operator algebra, to another. It follows that we shall

take no interest in compilers-as-programs; we shall from the beginning

be satisfied with a mathematical description of the function to be

computed by a compiler, which will ordinarily take the form of a

specif i •;, '.on of the translation for a generating set of the source

language. This together with the requirement that the translation be

a homomorphism will by the unique extension lemma specify it completely.

The translation functions we shall consider will be of quite a

special form. Each will produce, given any eleruent of the source

operator algebra (which is to say any phrase of the source language)

a result which is a BRA — intuitively speaking a flowchart for computing

on a suitable machine whatever relation is the meaning of the phrase.

This means that our target operator algebra will be in every case one

whose elements are BRAs. The bulk of this chapter will be devoted to

describing a class of operations for building big BRAs from little ones,

from which we will be able to select suitable operations for the target

algebras of the examples of compilation we shall wish to study.

The example compilers we shall model will all be straightforward

and non-optimizing; the operations we require for target operator

algebras are intuitively all of a very simple sort: namely, to take

all the operands (flowchart fragments compiled from subphrases) and

"patch them together", perhaps with an additional constant fragment

peculiar to the operation, to give a bigger flowchart fragment as the

result of compiling the whole phrase.

56

r.r; w g-r- ^, —J-j.-u.-w,.^-.-i..-. ■■-. _.._..,..... .. ^ ^I^I^I.J^I^I.H , ti ttt ,t,mtm\^^^^i^^^i^^^^m^^f^^mr9^^tmm^mw^^^mjrmi

7-*

Let us take up Example SS again to show what is meant. Our idea

is that the compiler for statement sequences should simply carry out

the modelling of sequences by straight-line BRAs informally described

in Example 1.3 . That is, we want a compiling function H which

produces from, e.g., the unit statement sequence f , a BRA which looks

like Tf • Similarly, we want K(g). = Tg and K(fOg) =(•£.&•) ,

But since we want K to be a homomorphism, we need to construct a

target algebra, call it SS: {D } - (D xD - D) , where

D c Obj^Hra^^ •••5) , such that SS-j: (if, Tg> H (• M • A •) .

Note that the right-hand sides of these equations do not as yet

denote specific BRAs because we have not said what the carriers are.

Intuitively this really does not matter — we are only interested in

what BRA we have up to isomorphism. However, as a technical device

to assist in defining the requisite operations, we shall, as will be

seen shortly, make fixed choices for the "entry and exit" carrier

elements -- i.e., those which will serve as points of attachment to

other BRAs.

For another example of what we want to get compilers to do, let

us take Example AE, our language of arithmetic expressions, i.e., the

algebra AE = Wr. ,({x,y, ,. ,. }) . Our idea is to compile in effect V,... j

Polish postfix code for a stack machine, that is we want a homomorphism

K ' : AE - AE , where AE: {+,...}-. U (D' ^ - D') > with
i>0

D' c 0b<]•(/3ra'-
+,•■•,Lx,Ly, •••^) . Here L stands for "load to the top

of the stack"; + or the like is an operator both in the algebra of

57

:ä>::<^:^ä MMMmmämmmmkmmmmmM

:--.

™Jl.J._,^ .J . H I». ■ .11^. ^4^ .« .« .MI-WW^.1*«/ tlJ'.^W^i

BRAE AE and in the individual BFAs which are its eleteents; in the

latter use it will turn out to mean, 8f.s ^e might expect, "remove the

top two elements of the stack, add them, and replace their suuj on the

clack". We want K'(X) = TLx , H'(y) = TLy , and

K'(x+y) =(•!-•• ^« • H •)> so we need an operation

A^ ^ : D' x D ' - D' such that "A^ (t Lx, t Ly) = • ^ . W • M .

(and similarly, of course, for any other pair of operands).

In every operator algebra of BRAs which we define, we shall require

that each of the elements (BRAs) shall possess, as a subset of its

carrier, a certain fixed :et (that is, the same for all elements, ■*

for all operator algebras) of "distinguished nodes" which will provide

the necessary points of attachments to other BRAs.

Intuitively speaking, an operation in such an alg;4'ra which dees

nothing but patch its arguments together can be completely specified

by telling the fate of all the distinguished nodes in the argumuits —

that is, what sets of distinguished nodes are to coalesce into single

nodes and, of these latter, which are to become the distinguished nodes

of the result, and which are to be "undistinguished". If A is the

set of distinguished nodes, B is A together with as many new

undistinguished nodes as are needed for the resulting BRA, and k is

the arity of the operation, then we can convey just the information we

need by giving a function p: A Ü • • • Ü A -* B . (Note that we must

k times

have A c B to ensure that the. reault of the operation possesses all

distinguished nodes.)

38

1 - ■ -■.■.".■.■■■ i . i . • i.. , i. i . i, . ., .■ .■ .■ .■ .■ .■ • ■■ .« ■ i • ■ i ■ 11 ■ ■ | ^pam^M^ipQpHiwivF^vpvfffjfjq

■'■.

IN.

Thus, for the algebra SS , we take for distinguished nodes the

set [S,H} (meant to suggest "start", "halt"), we take I to be an

undistinguished node, and we expect to be able to characterize SSn

by a suitably chosen function p: [S,H} Ü {S,H} - {S,I,H} . To be

able to distinguish the two copies of {S,H} we give names to the

injections into their disjoint union:-

{S,H3 i {S,H3 Ü [S,H} i [S,H} ,

and we can no/ define p to have the effect it should by:

„v

p=

iS M S

iH H I

jS H I

JH M H

This is cumbersome notation; we have had to invent the names p > i ^ j ^ I

for objects which are of no interest in themselves. We hasten to

introduce a more pictorial notation, which specifies the same operation

SSg by:

SSD(P,Q) = (sj (7)—^H s^—u) fcn

(Note that P and Q are dummy variables, and stand for any BRAs

in SS .) This style of definition we call a construction diagram.

Having defined the algebra SS , we can now define the compiler

K: SS -»SS by its effect on the generating set [f,g,...} ; this

effect should of course be:

39

a^nv:y-¥tf;a^^^

X.^B T-.^^.I "-JT'^J," r-7-jfi'^j-i"T ' '-if i—; rj*. ^i" f",' ^ •? v1".' r v l"*; l' ''"J "^J I'^l11 ^t1! IT |«,.' ■-'"! fj^^^^^ff^1^

s
*: f »- Tf

Pf

A patchlng-together operation on BRAS „Ith Eet A of distinguished

nodes, which incorporates in its result not only its ardent BRAs

but also a constant (i.e., characteristic of the operation) BRA a,

may similarly be determined by a function

5: l»l 0 A 0 ... 0 A - B .

wo „m of cUur6e als., use Cünctruction dlQfiraina tn ^^^^ ^^^^

"ItMssnrt. in particu.lar, taxing ,- to be a typical operator of

wo (iufine Lho operatJon AE^ by:
AE ,

iä+ (P^Q)
T)
H

We can -^ately read off ^ this diagra. that the set of distinguished

nodes for AE is again {S,n} , and that the constant BRA involved

18 * ^ • • However, the diagram suppresses information of no

interest, namely what is the carrier nf i
carrier of • n • , and what are the

two undistinguished nodes introduced by the operation.

We complete the definition of the compiler K': AE . AE by

requiring, for xeX ,

*'
S

TLx

H

i
^1

ho

m U»i4

rmmm&mmmm^

We shall give the name of "constructions" to the class of

operations in algeoras of BRAs of which we have Just seen two examples.

Although we have a convenient notation for describing constructions,

we lack as yet an explicit definition of what it is for an operation

on BRAs to be a construction. We now prepare the ground for that

definition. • "

It will turn out that for the technical development, especially

in Chapter VI, the following property of constructions will be important:

The result of a construction simulates each of its arguments (and also

the constant BRA, if any, which it involves). By the characteristic

property of the coproduct, ® , in any category of BRAs, we see that

an instance of a construction which combines a constant BRA £ with

arguments P-.^"-*^ > yielding a result which simulates each of them,

may be factored into simulations of P-])--'jP> and Q, by

£• © P, © • • • © PT. > followed by a simulation of ^ © P.. © ... © P. by

that result. This latter simulation is of a kind we shall call a

"projection"; considered as a function it merely collapses the appropriate

collections of nodes to single nodes. As a morphism of BRAs, it will

have the property that the simulating BRA possesses no relation-instances

beyond those necessary to make it simulate the coproduct; that is, every

relation-instance will be attributable to an antecedent either in £.

or in one of the P. . This last requirement, together with the

choice of C and of the projection function, will suffice to determine

the result of the construction uniquely.

Thus we are motivated to define:

ia

^^

_>

^^..,^^,-.. .^.B-V.-.,.;-A r, -^..^j... -o ^r^;.,, ■ .:.,■_- ■.,,.,.. - -..- Lvr-. JL >.■-•.;.- :.!■■ r.u-:.- A;.••,■ :■ ■>,■.-,vu '-• ■-■ •'■ •-- --• "> ■>:> •> •-* ■--V 'v. ---1

~« i -w i -— * "».T ■s.n ■; T" <T*1«"1<*TXTJ « ^ ^ -.'l ü^.'^Jl J T1, ^ll '^ J -I ?9 ■.pf^^^^^lBJ^^inJl^^P^^WT1!"1'1*11^^^^»'^^™

Definition V.l; A simulation p: tf - /? in ßra. is a projection

if p is a surjection and for all ye? , B = V~ 1(7 iV '

We are now able to define "construction" and some related terms:

Definition V.2; Given sets A c B , a r-BRA Q , a function

p: l^-l Cl A 0 ... 0 A , and a set L of r-BRAs with the property

k times

A c |£| for all peL , then an operation o: L -• L is the construction

derived from p and Q if and only if the effect of o on arguments

-1 *'' -k is given by tlie following diagram of morphisms (simulations)
p

in ßra :

c 2.1

C- © P-L © ... © Pk

P

°%>"'*t^

where each i. is the injection into the disjoint union:
J

and where p: 1^1 Ü jpj Cl ... Ü |pkl - (l^l-A) Ü ... Ü (|Pk|-A) Ü B

is the projection (depending on the p.'s as well as on p and ^)
J

whose effect is:

p: a H p(a) for a e j^j Ü A Ü • •. Ü A ,

p: x H x for x € (|p. |-A)
J

U2

I
tf>A:?>?^aKv::fc:::::;:y::^a->:i&?>^^

Mv

3

r>>:

^

*-J

> . >

In the case where g. is absent — i.e., we have a pure patching-

together operation — we still call o a construction, and say that

it is derived from p . In both cases we also call p the kernel

of o .

Example BE provides a more interesting application for our method

of defining constructions than those 'Just given. The idea is to compute

the value of a Boolean expression in the Lisp (as distinct from Algol)

fashion by a series of Jumps, one for each occurrence of a variable in

the expression. We want a compiler H": Wr -.(X) -. BE . The

BRAs in BE will have the operator set {JTX,JFX | xeX} (standing for

"Jump if x is true", "Jump if x is false"). We specify the effect

of H" on the generating set by

H"(X) = S'

^

Note that the BRAs we are compiling have three distinguished nodes:

a start node, a true exit, and a false exit. The following construction

diagrams give the effect of the operations in BE , and so complete

the definition of the compiler H" •

h3

yr- K- < ,

^^^^
^ ■'-•-v ■'-• ■-• -

^K-^a ^^^i:;»:^^^a%S^^^^^

"j-m-v; w T ■'. ■ j rn ■ -■ ■ J if-ir-^ir^t"j •■.■»■avj'w'^-'ii'^'jr'-jirr-Ti'wrv:"»'.1^:1 w-^u'-j's^iri;^'j^nj ^;n|H5v«M^it UPIW^IJ ^PP^I^M^I^^

BEA(P,Q)

B^v (P^)

BE-^P'Q) =

'si

BE (P) =

^

M:?£^^s^ea^a^%^^^^

- j- -.■'<" j-. 4•;■'■:• .-'-j•■■J« .".."»'.'V'j ' J,;■^.|^|,J|-«.||,.■ »jtimt^ymiji _»i mmfm^p^m^r^f^mm^mr^^^ßi^ffm

VI. Semantics of BRAs is a Homomorphism

It has been asserted in Chapter IV that the semantics of programming

languages can be given by homoraorphisms. In the case of the operator

algebras of BRAs which will serve as the target languages for our

compilers, a potential conflict arises, because we already have a

natural way of arriving at the function (or, in general, relation)

computed by a BRA (program) under a given interpretation: first run

(9:) the program on the BRA which is the interpretation; second,

take the accessibility relation of the product; third, restrict the

relation so obtained to whatever set of starting and finishing states

we are interested in. The purpose of this section is to set our fears

at rest, by showing that each of these three steps, and hence their

composition, induces a homomorphism which preserves whatever constructions

may have been defined in an algebra of BRAs. What is proved here is

similar in content to the main result of Landin's "Program-Machine

Symmetric Automata Theory". [Land 70].

Proposition VI.1; If o is a k-ary construction (on T-BRAs with set

of distinguished nodes A) derived from p: A Ü .•. Ü A -. B , and ^

is any r-BRA, then the functor P H £ ® W| provides a homomorphism

carrying o to the construction o' (on r-BRAs with set of

distinguished nodes A x |^|) derived from p x 1^ •

Proof. 5? H P ® #(, being a functor (it is trivial that fixing one

argument of a bifunctor such as ® does yield a functor), carries

every diagram

U5

w r\j w~ir^n^i »"^'«rvr ^nrv^-v^zrw^rw^j *

I
et. <k

\ I
j^ ® ... © ^k

to a diagram

A" V"
Pxl(̂

oC^, ...^k) ® 2

Recalling the natural isomorphism

■'l

(^ © ... © j7k) ® ^ = ^ ® ^ © ... © j7k ® ^ ,

we see that the latter diagram is an instance of the construction

derived from p x 1,^, ^ and indeed giving the result ofAi.. .,$0 ® %

for the arguments ß-, Q %)

of constructions. I

t &*.%%, t so that we have a homomorphism

■s

We may define constructions on relations exactly as on BRAs.

(Rein is of course isomorphic to Bc&S * , so that we may always if

we wish regard relations as a special case of BRAs.) A projection

p: R -» S of relations Is simply a surjection p: |R| -• js) such

that S = p" ;R:P , and again we have that an instance of a construction

can be diagrammed, as coproduct followed by projection.

r
In either of the categories Rein and Bra. , when we have a

diagram of the form

U6

55

«.-r^-iFTi-wj'!'.*>:(PJVwj P^II^PL.i-?vT^T^PV. «^' ^l■■_■l^.^,,l^•-■-^^lv^:, ^.- "r".^^ ' v V^." ^'^ "^ K* VnK'K* Km*,*Jwl\\9 ^VT^FV^^T^FT^^T*

A- • • • A,
1 k

\ - /^

X ® ... ® X

!■
o(X1,...,Xk)

with i,,...,i the natural injections into the coproduct, p

a projection, we will for brevity denote the composites

poi-^ ...,poik by P1i'-->Pk •

We now have the terminology we need to state and prove the

remaining two propositions of this chapter.

Proposition VI.2: If o is a construction on r-BRAs derived from the

kernel function p , and o" is the construction on relations derived

from p , then ac , the accessibility functor, acts as a homomorphism

of operator algebras carrying o to the operation on relations

ffncoo" .

Proof. Recall that ac = iThcoE ; we shall show first that E acts as

a homomorphism of constructions carrying o to o" . This is easy;

because E is a functor whose mapping function is the identity, every

r
diagram in ßra of an instance of o applied to argument BRAs

U7

l&^M.'::..^ -^ '■■ ->■ . -'■ ;;1^>A^^-:-:^^^

I

L<. <

^ ••• 4

^ - A
^ e • • • © ^k

p

oC^, ...,tf'k)

yields a diagram in Rein:

E ^ ... E ^k

S (^ © ... © ^k)

1'

I

and from the obvious equality of binary relations on

1^1 Ü ... Ü 1^1 :

E (^ © ... © ^k) = E ^ © ... © S ^k

we conclude that the latter diagram in fact displays an instance of o" ,

and hence we have the necessary homomorphisin property for E :

E (o.(^1,... ,<7k)) = o"(E^, •.., E^k) .

We have now to derive the homomorphism property for ac , namely:

ac(o(^1, ...,^k)) = ^ncoo"(ac ^ ..., ac£7k) .

This equation is easily established in one direction:

ac(o(^1, ...,^k)) = tfhcCEK^, ...,£k)))

= tfhc^-CE^, ...,Etfk))

= U I U pT1; E#. ; p. 1
r>0 L 1<J<k J JJ

C U f U pT^f U [E^](s),);p.l
r>0 L 1<j<k vs>o 'J ^ JJ

= «jjhcoo'^ac ^ ...,ac ^k) .

(r)

(r)

hS

■ '. »!.-»,>.■. Ki-w-vTi tT. TTIT^I. i rm T-w-r^TT^s-nn-v-1 '.-v 1 ^ '-^. r^-i -ri ">"1 «^ ^' <. ■■ ~ 1 »^^IT^K' » ' ."■.'■« V« .'^ W ». • ,'^ J ' T'.'.'•.'»'..'•'.'- 'I'.1» " »'J ^ J '^T^TT'^n^'^^

To go the other way, we need to use the fact that the ancestral

^ives the least reflexive and transitive extension of any relation;

hence if we can show:

(*) o"(ac ^ ...,ac ,7k) c f3hc(o"(r^1, .. •, T^))

we will have, because the right-hand side of (*) is reflexive and

transitive and extends the left-hand side, our desired conclusion:

ötic(o"(ac z^, ...,ac ^k)) c ö5ic(o,,(V^, ..., E^k))

= ac(o(^1, ...,^k)) .

But (*) is Just the inequality:

i) pT1; U (^.)(s);p. c U U P^jL^JP.l
l<j<kLJ s>0 ü il r>0Ll<J<k lJ J JJ

and this is true by virtue of the inequality:

U u J J J J

which holds for every pair of values of s and j . finally, (**) is

a consequence of p. being a function, so that p.jpT 3 1 (this

J

establishes the case s > 0) and also p" jp. c 1 * v (this

establishes the case s = 0). [I

In the compiler correctness proofs which will follow in Chapter::

VIII - XII, to obtain the relation computed by a BRA # in an operator

algebra of BRAs with a given set A of distinguished nodes, we shall

always take the restriction of the accessibility relation of ß to a

relation on the set of distinguished nodes to itself, that is (ac ^) ^ A

k9

(r)

fT'.1 T1^ Mi! '. T. WV'W STT • .--.--»,•-,-.-•.- - • j-i-J■.■l-^.•l-^J»»•," •»■«." ■.T"? »."»,■•■•."■.» V1.1 VfW 'WW!"'Pf«Pl»^l,,'"*'?^",,V^,'^"^"l!|

IW

(In the ordinary case that B is the product of a program ip and a

machine ^ , then A will be the Cartesian product of the set of

distinguished nodes of p with the carrier of 7? .) This wil1 no^

always give a result in accordance with our intuitive notion of the

relation or function computed — note especially that (ac ß) ^ A

must be reflexive -- but it will turn out that by the choice of a

suitable decoding homomorphism (from the algebra of relations computed

by target language programs back to the algebra of source language

jK« meanings) wc will be able to obtain the corroctnccs results we expect.

Taking this uniform view of what is the relation computed by a BRA

will allow the application of the following proposition as the final

step in obtaining target language semantic homomorphisms.

Proposition VI.3: If we have an operation ^Jhcoo on reflexive and

transitive relations, where o is the construction derived from

p: A Ü ••• ÜA-»B , then restriction to A , that is the mapping of

relations R MR^A , acts as a homomorphism carrying öfrico to tne

operation (1 A) °#-ic°o .

Proof. The required homomorphism property of M A) , for an arbitrary

fe instance of tfn.c°o which we may display as the diagram in Treln

>

_<•:

\
R, ® • • •

Rk

/
®Rk

ncop

6tlCoo(Rl'
...,Rn)

i 50

^»T-tF-i.-.u^-uwt w-srwv-n i-wi^wi-w-\-ff\-^-rTCT^ri,v^ ". \ ".l ,V ^ ^.^ V", f » ' J ■ tf ^ J ■" J »V ' / ■ .' 'V^ .'U . W11^^1 UP J5^.«II^ IJI^IM ill ^^^r "^H

is the equality:

(^icco(R1, ...,Rk))]A = {ancoo{R1]A,...,Rk]A))]A .

The inequality g is immediate, because

o(R1^A, ...,RkjA) = o(R1, ...,Rk) JB ;

and, since restricting after forming the ancestral rather than before

can only produce an enlarged relation, we /e

^cCoCR^ ...,Rk) JB) C (^ic(o(R1,...,Rk))) ^B ;

therefore

(^icoo(R1jA,...,Rk]A))^A = (^cCoCR^ ...,Rk) JB)) JA

c {aic(o(R1,.,.,Kk)))\B\A

= (ö*ICOO(RI;. ..,Rk))] A .

In the other direction we have to show:

i>0 Ll<J <k J ' ^ ^J J''

U f U ^A);(R 3A)j(pJA)! |1A
i>0 \^l<j<k J J J 7

Because p is a projection, and so can neither coalesce a node in any

|R.1-A with any other node, nor map it into B , we can have

(Pi;p.): ana' only if either a,a1 eA or else i = J and a = a'

Hence for b,b" G B , we can have

P-
1
 \ P. PT1 R, p.

b > >- an—* a' i—=+ b' i—a-^. a" ,—±$ c ■ i, i^ bM

51

only if a,a"' eA , and either a'ja'^A and b'eB as well, or else

i = j and a' = a" , in which latter case, since R. is transitive,

it must already be the case that R.: a M a"1 . What we have just shown

is that:

(p^jRiJPiiP^jRj ;Vä) 1 B c Up"1 \ A); (R.] A); (p. 1 A); (p^1 J A); (R^. ^ A); (p^. ^ A)

U (Pi1jA);(RijA);(pilA)JjB .

An analogous computation may be made for as long a composition of any

of the k relations (pT ;R .;p.) as we like; hence for each m > 0
J) J

we have:

([i^Sk^^]^

c I U j U (pfj^jCR.J^^p.lA)"]1 IJB ,
0<i<mLl<j<k J J J J

hence the same thing with "] A " in place of " ^ B " , (since A c B),

and hence, taking the union over all non-negative m , the desired

inequality. |

In the above propositions and proofs, constructions derived also

from a constant BRA Q have been left out of account, but this was

purely for notational convenience. The proofs dealt solely with single

operation instances, and it is plain that nothing changes if one of

the (7. or R. is made a constant characteristic of the operation,
-J ,3

'y,2

rather than an argument to it. Combining this observation with

Propositions VI.1,2,3 we may assert the

Result; If o is a construction on f-BRAs derived from

P : |C-1 Ü A Ü . •. 0 A -. B and £ , and if ^ is a r-BRA, then the

mapping p w (ac(p ® ^' (A x j^]) is a homomorphism of operator

algebras carrying o to the operation (^ A x |?fl |) ° r^coo' , where o'

is the construction on relations derived from pxl|«,| and ac(^ (gi 7g)

In some of the applications of this result which follow, in

particular in the proof of the compiler composition theorem in the

next chapter, we shall assume that we always have A c |^| , and that

p : c *-* c for c e |c.| -A

Letting

P" =df P 1 (A Ü A 0 • • • Ü A) ,

we see that our k-ary construction o is exactly that yielded by the

(k+l)-ary construction derived from p" on fixing its first argument

to he (l . In this case we shall say loosely that o is derived from

p and Q , and it will be strictly correct to say that o is carried

to the operation

(^Ax laD'oncoo" ,

where o" is the construction on relations derived from p'xli^i and

(ac(Cc?75)) ^ (Ax |^|) •

55

 i

• I 1. bl. I-. . > t I V I '««I ^.' -. 1 '. I -. I W ■. ! V 1% l^K* t%

VII. The Compiler Composition Theorem

i

The theorem to be proved in this chapter provides the essential

tool for compounding simple results about compiler correctness into

I complex ones. Intuitively, it amounts merely to the observation that

if we can compile each of the individual operations of one machine into

a program for a second machine (or even, what is a weaker assumption in

I general, compile each element of the generating set of an algebra of

programs for the first machine into a program for the second, and also

the program fragments from which the constructions of the first algebra

I arc derived) then we can compile any program (belonging to the algebra)

for the first machine into a program for the second.

We consider an arbitrary Q-algebra L of the sort that might be

, the target algebra of a compiler, that is an algebra of BRAs, say with

JLJ c 0bj(/5ra) with a generating set X = (g. | iel} for some indexing

set I , and with each k-ary operation L (for coefi) being a

i construction derived from a kernel p, : AÜ ... Ü A -» B , and from a

k+1

constant r-BRA CA^ • (We are here assuming A c [CO) | ; this turns

out to be no restriction in practice. Recall that A is the set of

distinguished nodes some of which may be identified from the several

operands as specified by p in the process of "patching together" the

argument BRAs of L to form the result. The set B contains all

of A , in order to tell us which are the distinguished nodes of the

result; B may also contain some other elements, used for images

under p of collections of nodes which are simultaneously to be

identified and to become undistinguished.)

i.*.,.iÄ7,,Ä.,ijMÄiw.üjwLk»iijirEi« '.«.-■•'^,
"'M

,,
I"i1'»""".""v }ir':'Wv'*'.''' 'i'TTTTTTT'TT^rT'TTTV^'P'S

We recall that the effect of L on operands P-,>-'->P, is

given by the diagram

QB. pi ••• Ek

\V /
c-ü) © ^ e ... © Pk

with p a projection, and (pi A U . • • U A) J B = p .

We suppose, as is our standard practice, that the semantics of L

are given by running its programs on a machine Tfl , with |^| = M ;

that is, we have a semantic homomorphism cp: L -»S , where

qp: pi- (ac(p®^) J (A xM) (cf. Propositions VI.1,2,5). S , the

semantic algebra, has as elements relations : AxM^< AxM , and receives

an induced i7-algebraic structure as demonstrated in Chapter VI.

We shall now assume the existence of a correct compiler H applicable

to the f^ and to the C£) , producing A-BRAs (i.e., BRAs having an

arbitrary and in general different operator set A) and will prove,

subject to a number of hypotheses, that K can be extended to a correct

compiler (homomorphism) from L to a language (fl-algebra) K of

A-BRAs; we denote the extension by extend(H,L) . The hypotheses are

somewhat lengthy; we shall therefore expound them separately before

getting down to the statement of the theorem.

The first two hypotheses are mainly a matter of convenience; a

spuriously more general theorem could be had by replacing the set

55

,■*,•■.->•- :-.,-j, r i, r. i,- ^ ,•>» ; • r> " ■- -•»"> r - r - ■ ■" • "J-'»"_«'> rJ- r <• -■ ■ r l •_> ij> -.S« '^MMMäMMMMEMMM^^m.

i

*

inclusions which they call for by suitable mappings. The first

asserts that the results of K contain the right carrier elements

to permit them to be patched together by the p .

Hypothesis 1; For each f^eX , Ac |H(P.) | > and for each ooeß ,

A c |H((3-CO) I .

The second will make the states of our translated programs directly

comparable to those of the originals: we may suppose that our A-BRAs

will be given their semantics by running on a particular A-BRA (machine)

TTf' , with M' =df |^'| , and we require that M be a subset of M' ;

i.e., to give the inclusion mapping a name:

Hypothesis 2: IJ,: M c M' .

We also make the abbreviation:

9 =df 1AX|JL:

A><M

 E AXM' .

We may define a semantic function \lf for A-BRAs,

t: Obj(&mA) - (AxM* -K AxM') , by

v|;: ß ^ ac(^® %') ^ (AxM')

Moreover, thanks to Hypothesis 2, there is an obvious way of "decoding"

relations on AxM' as relations on AxM , namely restricting them;

we therefore define the mapping 6: (AxM* -K AxM1) -» (AxM-K AxM) by

5: P f- Pj (AxM) .

We may now state the main hypothesis, which asserts that K correctly

translates the bits and pieces of which L-pro'-rrams are built.

56

>^^^.L^... ^w. ,.-..■.,■,... ■^--. -.f n..,..-. ..-L ■-.,.. w-..., ;.,-.,, ■-. y. .;.,-. s.s.s.f..:.,:. j;..;, c.c..:.^^. <-:,-.'^ c'fJL .■•.s.-

-' ■• ■ ^ --'r■.■^"^'- t v-,■'.-» (""v im-v11' i\ -i II'TI -JI1 '^'"MI^'. ^i TM1^. i •: i";11!"^""^ «jiTi'vt": r^-TOT^nwi

Hypothesis 3; The diagram

X U {£0)1 Oüefi} —Ü-^ 0bj(/9raA)

1' 1 *

AxM-*C AxM < AxM' -* A xM'

commutes.

Unfortunately, Hypothesis 5 does not claim as much as we need; it

might be that some of our relations \|/<»H(P) relate elements of AxM

to elements of Ax(M'-M) in such a way that when these relations are

compounded, "too much" gets computed even from AxM to itself. We

therefore require that all our relations should map AxM into itself:

Hypothesis U; For peX U [C^cu] ,

WP) 1 (AxM) = (WP)] (AxM));e

or, to say the same thing in more uniform notation:

Q^OHCP) = 9;\|foH(p);9" ;9

We may take advantage of Hypothesis 1 to define our ^-algebra K

of A-BRAs in a natural way: K is generated by the set {H{P.)) iel] ,

and each operation K , for cüefl , is the construction derived from

p and >t((3-Cü) • Informlly, we will build up each K-program in "just

the same way" as its corresponding L-program. The unique extension of

K 1 X to a homomorphism extend(H,L): L -• K evidently exists; it is

1
— the function which carries out the just-described correspondence (but

see the remark at the end of this chapter). Having made an fl-algebra

7 57
h

rw^-w '"F-r&r-z* r^w

:

out of our A-BRAs, the semantic function i|f becomes, from the result

of Chapter VI, a homornorphism, inducing an ^-algebraic structure on

its codomain; we denote this latter Q-algebra of relations

: A xM' -K AxM' by E .

We are now in position to state the result of the present chapter,

which asserts the correctness of extend(H,L) .

Proposition VII.1. (Compiler Composition Theorem): Given Hypotheses

1, 2, 3, and h, the diagram

extend(x,,L) ,.
L ~ ^ is.

S (5 E

commutes,

Proof. What we have to prove is (i) that the diagram commutes for

the generating set X and (ii) that 6 is indeed a homomorphism

of ^-algebras (we already know that cp , \|f , and extend(n,L) are) .

But (i) is just part of Hypothesis 5; only (ii) remains.

To prove (ii) we assume, for arbitrary oüeß of arity k , that

6: R. H S. (1 < j < k) , and endeavor to show:

(*) 5: Rjl^, ...,Rk) H ys^ ...,Sk) .

Ac it turns out, in orde:; to prove (*) we need additionally that the

property which Hypothesis k claims for the generating set of R holds

for all R r 1R| , namely:

(**) 9;R = e;Rje jQ

58

>

;~nr- s ^i ^--^ ¥'i .". y ' »^: •".' • j »■_•,■■ »v.' — j ■;-_.■-'_.■(-_■.;-^vl jvyrj T.' '^".'I'J. ;• ' ." "ip IM."i 'y ' .' 'K' ' !>' .'■ V \f "JTf

;;:

Hypothesis k gives us the base for our inductive proof of this

property. The induction step can proceed simultaneously with the

proof of (*); that is, we may additionally assume that (**) holds for

each of R , •••^Rk > provided we can then additionally prove that it

holds for R,iRn, • • ^R,) •

As we recall from Chapter VI, we have:

^(R^ ...,Rk) = (acCoJ^,.,.^)))^ (AxM«)

where o^ is the construction on relations derived from iLxl., and

(ac(H(^cu) ® W?')) ^ (AxM') . If we make the abbreviation:

R0 =df (ac(>i(^) «S')) ^1 (AxM«)

PtV
then we may diagram this instance of R as:

R.

\-V
R,

\

R0 © R1 © ... ® Rk

(^ (AxM,))oacop'

^(R,... .^RJP

where the projection p' is in fact the kernel of o'

P* = POü
X1

M.

We write as usual for the composite of p' with an injection:

PJ =df P,oij

and we define:

59

^—:—^ • •—»■-•»"."•"."•—".•:• .,■,.■' J •.--.' ■ '■.■■. »,' ■, i ■: ■, ^'_■. . ' ■. ■ i "^7^^^^^^^^^^^^^T^!^T,T'^^'T?''VP'V"?,'?,',^■•,■•,

* i-l
R- =.p p. ; R. ; p*

tliat we can write:

R^CR ,...,R) (u [u RM "') J (AxM')
i>0 I 0<j <k J

Similarly we may write:

sjs^ ...,sK)
i>0 I 0<J <k

S. 1 I J (AxM) ;

with S = ac(c^. ® ^) J (AxM) , S =p. ;S.;p. , and p. the j-th

component of p =df P^ y ^ •

Hypothesis 5, in its application to QMi , simply tells us that

6: RQ M So * and Hypothesis h in its application to (3>a) simply asserts

f**) for R ; hence we see that we have completely assimilated R

to the other R.'s , and need not give it any further special treatment.

For conciseness in what follows, we make the abbreviations:

U =df U R
0<j<k J

and

w =df u u^) ,
i >0

and we also give names to two more inclusion mappings

T|: A c B ,

and

df IgXii,: B xM c BxM' ,

60

>■

pw

wmmMMMmM[^^^m^^^s^^^^^:^:^^ t:, ^

T - w -.'WV-W-J-M-^TW • -- ," .■-.-.••-■*--* -^ TS ^4^ \ * ViarT^^^rr^-T--v^V^^T^VT^7T^T^?TTr^rT^^T!T5^VTTrTTW^^^

so that we have

The crucial part of the proof consists in showing that an analogue

of (*■*) holds for W , namely:

(***) viWjv"1;^ = v;W .

It is easy to show the desired property for the individual R.
J

(0 < j < k) :

T,* "I '"IT, , "I

3 3 ' 'ri

= v;R. •

(by (**))

The property trivially distributes over union to give:

v;U;v' ;v = v;U ^

and then we nay calculate, for each i > 0

v;ir 'jv" ;v v;(u;v"1;v)(i) (We are entitled to

insert (v ',v)'s

progressively from

left to right.)

v;U (i) (We may knock out all

the (v' ;v)'s ,

including the last one,

from right to left.)

ana uniting over all values of i , we have as desired:

61

^MA-:^^

r^-M-^Tr--^-^ Tr^-Tr-^ ■ .■ ."9'J .> ' .■'■ .■ ■".■'■■ • 1-.W - » -•■-■•. I-.1-»^1 P • P^i ■1 ■» pj »»IHI_B1 ill^ JIM i .Illi-J ^WB^P^^^^p^^^Wi

v;W;v~ jv = v;W

Having proved (■x-x-*), we can immediately pay off our debt to the

inductive hypothesis by showing that (**) holds for R (R ,...,R) ,

that is:

= (TlxyjvjW^Tl-1/^,) (by (*^))

Now at last we can compute:

eCRjR^ ...,Rk)) = W^ (AxM') J (AxM)

= Wj (AxM)

= Wj (BxM)] (AxM)

= [v; U U^jv"1]! (AxM)
i>0

[U (vjUjNj"1)^1^ J (AxM) (inserting (v"1^)^

L-1-0 -* from left to right,

as before)

f U f U (R*5 (BxM))^1)]] (AxM)

f U T U p^^RJ (AxM));p l(i)1l(AxM)
L i^0 Vc<J<k J J V J

S(ü(6(R1),...,5(Rk))

62

mMmMMMMMmt^mmmmmMmmMmgmsm

■ . -« . —"- . i-^- «r- -^ 7 c -.' . ■^i'^*-,lES"T,r V 'I- »L ■ V >• • .^»'tf.-.;..-. rv .^.y . IJJ ., ^, ._, 'wyiji "V _'W " W* »W iWJ IPUW

We have proved (*•), hence the theorem.

£

A typical application of what has been proved in this chapter

will of course be to a situation in which L is the target language

corresponding to some source language, N say, and in which we have

already a correct compiler \: N -♦ L , in addition to K satisfying

Hypotheses 1-U. We will then be able to assert the correctness of

extend(H,L)o\: N -♦ K . Hence the name, "compiler composition theorem".

&'
Remark; It is not strictly true that the homomorphism extend(K,L)

must always exist. What is required is that in the diagram of

homomorphisms

^(X)

a 3

-> K

where a extends the insertion : X c |L| and ß extends the function

H ^ X , the dotted arrow should exist; that is, the homomorphism ß

should factor as

ß = extend(K,L) oOC

This is to say that for any w-^w e |WQ(X)| we must have:

«(v^) = a(w2) implies ß(w1) = ß(w2) ,

or, less formally, that all equations (of terms built up from elements

of X with the operators in ft) which hold in L must also hold in K

(with, for each p.eX , the substitution of H(P.) for P.).

63

■.--.-- K-' .-«V-»-,»'.>•■.■». ^ •.'.■'^^ ". ^'".i».-i». ■ v-r- ,_■ j» .■ ,i .•,»'.-_?■; i" ■'.-■-' "n.i .1 ,t im %t »HI ■ I I IJI^T^V^T^^^^^^*^^

This will be the case if the various p. and ß-Cü are all

s-ufficiently distinct so that all the equations which hold in L

do so by virtue of the structure of the kernels p (which determine

the operations in both L and K), a condition which it does nob

appear difficult to ensure in practice when selecting a generating

set for L . For example, the equations which are instances of the

associative law in SS , and which we may depict as follows:

(st 0 *E s^ 0 fn^
>-' CH s>—©—^ o v_^ _. H

^ SP 0 ^H ^ 0 ^H^
-0 ^ H Jj " "'l) 'sX

s ~

are of this sort (although it may require some care in the precise

specification of how disjoint union is to act on sets to guarantee

that they actually do hold).

B-M

6^ m

m^mmm^mi^mmmmmmmmmmm^^^^^^m^^^M

• ' .1 w-v "-ir-'-Tm—^-iF-'n*"^;-- ^-■ii ,--^ iT'^r -V '«r":'»■■-#■ ;'■« lt!« v* V r ■ 'r1" 7_^ y " u/ "t;"! »*' w^^ ""^ ^'^"i1 '■V^f f

VIII. The General Plan for Simple Proofs

I of Compiler Ccrrectness

Chapters IX, X, and XI will ccnsist of example proofs of compiler

correctness. These will be simple in the sense that each compiler will

be for a language with only a single feature; hence there will be as

yet (but see Chapter XII, in which these results will be combined) no

compounding of compilers, nor any appeal to the compiler composition

theorem. The purpose of the present chapter is to set forth the schema

which all these proofs will follow, and to introduce some uniform

abbreviations in order to make the formulas less tedious.
i

Given a source language (i7-algebra) L , a semantic homomorphism cp

to an ^-algebra S of meanings (in general of relations, but usually of

at least partial functions), and a compiling homomorphism w to a target
t

language £ which is an Q-algebra of BRAs with constructions as its

operations (we shall always take the algebra L to be exactly the image

of L under >t), we may list as follows the steps which must be taken

to prove the compiler correct:

(i) Specify the target machine -- i.e., the BRA Jft on which

compiled programs are to run. This will, by the result of Chapter VI,

determine the target semantic homomorphism \|/ with the effect

i|f: £ - (ac(p ® ^)) ^ D ,

where the domain D is the Cartesian product of the set of distinguished

nodes of L-programs with the carrier of 77? . The image of t under \|r

is R , the Q-algebra of relations computed by L-programs; the elements

of R are reflexive and transitive relations : D -X D .

From step (i) we have a three-sided diagram:

m
source

sememtics

compiler
-> k

target
semantics

K
What remains is to supply a fourth side for the diagram and prove its

c ommutat ivity.

(ii) Specify a "decoding" function &: H -S from relations

computed to source meanings.

(iii) Prove 8 a homomorphism.

(iv) Prove that the resulting closed diagram commutes for a

generating set of the source language.

<e may then — after completing steps (i - iv) — conclude, by

Part II of the unique extension lemma, that the diagram commutes for

the whole source language; i.e., that the compiler is correct.

In choosing 6 , we shall demand more than just any arbitrary

homomorphism : R -* S ; we want one which will tell us how to use a

compiled program to do the work of the corresponding source program.

We may suppose that S has for its carrier a set of relations of some

type, say a subset of (E, -X Ep) for some sets E, and E2 . The

carrier of R , the Q-algebra of relations computed by target language

programs, is a subset of (D -K D) . What we want then is to specify 6

by a pair of mappings (e,d) where e: E, -• D tells us how to "encode",

that is to choose an initial state for the compiled program and its

66

i^M:^:^^

machine, ('iven the argument of the source program; and d: D E.

tells us how to "decode" -- what sense to make of a state in which the

compiled program halts (d is partial because halt states are in

general a proper subset of D). The effect of 6 is then of course

«: r H. d°r°e , or equivalently if r is a function, 5(r)(b) = d(r(e(b))) .

To prove 6 a homomorphism will be to prove for ail Cüefi and all

r,, ...,r e |R| that

S^d'r^e, ...,d«rkoe) = do^r^ .. .,rk) »e .

(it seems likely that for some proofs of compiler correctness, more

advanced than any in the present work, it may be necessary to allow

that d and e be general relations. Indeed they might be quite

complicated relations, so that it would become a subproblem of the

compiler verification to demonstrate the correctness of a method for

computing d and e .)

For some source languages it will be the case that the result of a

source program does not depend on any argument, so that it would be

most natural to take the set of meanings (i.e., the carrier of S) as

some set E not a space of relations. In such a case, computations of

target language programs will start always from some fixed element of D .

For uniformity's sake it will be most convenient to pick out this initial

computation state by means of a function d: 1 -• D . Therefore we shall

somewhat artificially enforce that source meanings are relations by

choosing for \s\ either (1 -• E) or (1 ^ E) . The former choice

is, of course, isoraorphic to E ; the latter, which contains additionally

the empty partial function, provides a convenient alternative to enlarging

E by an artificial "undefined" element in cases where our intuitive idea

^5

67

of the meaning function is that it is partial, although we are

compelled to define a total function to be the semantic homoraorphism.

Here in detail is the diagram whose conunutativity is the correctness

of the compiler K :

9

i

-»L

(= poacojt)

R
5: Q H» doQoe

it: P M p (gi flj

ac

^ /?•• Q H Q ^ D

The vertices of the diagram are all fi-algebras; the arrows are

(or, in the case of S , must be proved to be) homoraorphisms. Although

in the correctness proofs to follow, the source and target languages will

have their own specific names, the letters K,(p,t;«^^>p^D,

R , S , 5 , d , and e will be used without remark to indicate the

entities pictured here.

An additional notational convention: recalling that each operation

R^ is the composite of restriction to D with accessability with a

construction, we shall occasionally write R* for the construction,

so that we have

^o = (^oaco^
O

68

^mMmmMmMmM^mmäMä^^M^^mmmimMm^

IX. Proofs for Examples SS, BE, AE

Following the plan laid out in Chapter VIII, the present chapter

will prove the correctness of the compilers defined in Chapter V for

the languages SS, BE, and AE.

Example SS; We recall that the language SS is the free semigroup

generated by a set (of "commands") X . We use D for the operator

denoting concatenation in SS . SS is the semigroup (i.e., the

associative [D}-algebra) of X-BRAs generated from the image of the

set X under the action of the compiler K , namely for each feX ,

S
K: f »-> 1 v ,

H

by the operation SS , for which we have the construction diagram:

SS^Q) = ;s^ (7)—^."H S ^—(Q)
s - N-^ ^ " "H

(It may be supposed that we always take for result of SSn a standard

representative from the appropriate isomorphism class, e.g. a BRA with

carrier JS,1,2,3,...,H} , in order to make SS an associative

operation)

We recall further that we assume an interpretation i: X - (A -* A)

of the generators of SS as relations on a set A , and that we take

cp. , the semantic homomorphism, to be the unique extension of i to a

homomorphism : SS -* S , where S is the semigroup of relations on A (f-j

to itself under the operation of relational composition

-□ = ;

69

1 o

5w

We have now to specify the machine, that is the BRA, on which

compiled programs are to be run. For this we can take i itself,

since i is an X-BRA, with [ij = A .

The set of distinguished nodes of SS-programs is iS,H} ;

therefore for v. , the semantic homomorphism : SS -♦ R , we have:

^i p M (ac(£ ® i) J [S,H}x'A .

The carrier of R is the image of |SS| under i|f. . D is the

set {S,H}xA ; the elements of R are reflexive and transitive

relations : D ■* D .

No relation in R has any instance of the form H,a »-• S,b , nor,

except as required by reflexivity, of the form X,a M X,b . This

follows from the fact that the BRAs in SS have no edges either

arriving at S or departing from H .

We have the decomposition

Ra = (]D)oacoRl]

where R— is a construction on relations which may be represented by

the family of construction diagrams, one for every a,b,C€A :

/*
qR_r = I S,a»-

S,a

"®—^CHib» ^^—©■
H,c

Letting • denote the undistinguished node created by SS— , we may

express R explicitly by:

70

a R-, r 1[S>^H] xA U {S , a H. • , b | q: S,a H H,b}

U {• , b »-. H , c | r: S,b HH,c}

Then

ac (qR-j r) = (qR-, r) U {S,a H. H^C | q: S,a H. H,b and r: S,b H K^c} ,

and

qR r = (ac(qR" r)) J D
3

= 2_ U [S,a H H,c | q: S,a M H,b and r: S,b y* E,c]

=]_ U {S,a i-S,a} ;q ; {H,b i-.S,b} j r ; {p,c HH,C}

Define e: A -• D and d: D ^ A by:

e: a !-• S,a and d: H,a i-« a ,

and define 6: R -♦ S as always by

6: r M e;r;d

To prove & a homomorphism, we calculate:

6(qRn r) = e5(clK[:] r) ;d

= [a •- S,a];[S,a »- S,a];q; [H,b H. S,b};r;[H,c H H,c}; [H,c I- C]

= {a M S,a];q;[H,b t-> b}; (b (-♦ S,b];r;{H,c ^ c]

= e;q;d;e;r;d

= &(q)Sa&(r) .

71

7v

m
To check cp.(f) = 80^.0K(f) for f in the generating set X

we compute:

^i
fl i-^i(f)

and

fi H >|f
H

I i > ^ U ({S MH}xi(f))

i—-—> (a MS,a};({8 M H} x i(f)) ;tH,a M a]

- i(f) •

This completes the proof of the correctness of K • |

Example BE: For example BE we have BE = Wr ,(X)

(-i is unary, the others binary), and BE generated from . {K(X) | xeX} ,

?x/\j where for xeX , K: x -• JTx / \ JFx , with the BE-operations

T F

as given by the construction diagrams in Chapter V (p. kk). BE , then,

is an algebra of [JTx,JFx,JTy, JFy,...]-BRAs , where {x,y, ...] =X .

For the semantics of BE we confine ourselves at present to the

three-valued case, and (letting 2 denote the set [true, false"!), we

assume an interpretation

72

i: X - 2

As explained in Chapter VIII, we take for the carrier of S the

three partial functions : 1 '-, 2 , which we name ff (: 0 i- false) ,

tt (: 0 v- true) , and uu (the empty partial function). We take

the operations in S to be given by McCarthy's truth tables (Chapter IV;

P- 33) •

If we define the isomorphism k: X -• (1 - X) by

k(x) : 0 H x ,

then we may define the semantic homomorphism cp, to be the unique

homomorphism : BE - S agreeing on X with i

qpi(x) = i°(k(x)) . ^

We shall choose a target machine 7Pi_ dependent on the interpretation.

Its task will be to allow only those "jumps" to be executed which conform i

to the facts as represented by i ; since the facts do not change in the p-

course of execution, our machine need only have one state. Thus we take £;

m : {JTx,JFx,...} - (1 -1) , |

4
with, for xeX , ^

h

I
that is,

iff fj: x„ ift) . I

75

■ 1. > 1

For each compiled program p e 1BE| we have JP <8i #U. | = |p| X 1 = |p| ;

for notational convenience we shall pretend that the isomorphism ic

an equality; that is, we shall write S instead of <S,0) and so on.

iSj For the target semantic homomorphism, ^ : BE -* R , we have

^ : PHac(p®^i) J {S,T,F} .

It is readily verified that for any p e JBE| , P ® ^j. is monogenic,

and that Proposition III.l applies to give:

P ® ^j. computes a partial function from [S] to {T,F} .

Since |R| is just the image of |BE| under ty , this says that for

any Q G |R| , we have at most one of

Q : S H. T

and

Q : S M F

Hence defining

e: O^S , d: {* ~ |||j , b: Q M doQoe

makes 8 : JR] - |s| well defined; we may calculate its effect as:

8 : Q H tt iff Q:Si-T,

5:QMff iff Q : S M F ,

5 : Q M uu otherwise

Proving 8 a homomorphism is a matter of details. It is immediate

from the construction diagram for BE that R (Q) : S M T iff Q : S M F
—i —i

and that R (Q): S -. F iff Q: S -T ; from this it follows that 5

is a homomorphism of -i . We consider A , W , -D in parallel, since

they are isomorphic under suitable interchanging of truth values. By-

considering the construction diagrams we perceive that

R^ (P,Q) : S V* (F)iff

"(■}

f

V

F)and Q : S
T

and that

R^PjQ) : S iff P : S i- or and Q : S •-.(T
T

If neither of the iff conditions is met, the result of the

operation must be the identity relation lrQ „, _, . Applying what we
l>>,i,rj

know about 6 , we may restate the above results:

6(p S^A-VQ)

l)
tt^ Ttt^l

iff 6(P) = (ff) and 8(Q) = / ff) ;

6(P R^)
f f 1 I ff I / | tt 1 f ff
tt) iff B(P) = < tt) or 8(P) = / ff) Mid 8(Q) = (tt
tt (ff I 1 tt (1 tt

5(P R^A^Q) = uu otherwise, that is iff

tt
8(P) = uu or (5(P) = ^ ff and 8(Q) = uu

75

IN
I*.

Comparison with the tables (p. 53) for the S-operations shows that

what we have just obtained can be summarized precisely by

6(PHrA^) = Ö(P) S.A> 8(Q) ;

13 a
that is, we have proven 6 a homomorphisra.

The final step, to check commutativity for an arbitrary xeX , is

as usual trivial. We have the three cases i: x H true , 1: x H false ,

i not defined at x ; these yield respectively (p.: x v- tt , (p.: x M ff ,

qpi: x H uu . In any case we have both H(X) : S H T and K(X) : S - F ,

but in H(X) ® ^i we have respectively only the first, only the

second, and neither of these. It follows on computing the (essentially

null) effects of ac , p , and 6 that we get in the three cases of

i(x) respectively 5«ion: x H tt , 5<4OH: x H ff , and 6<4C.K: x H uu ;

that is, we have commutativity of the diagram, and we are done. |

Example BE -- 2-valued semantics; If i is required to be total, the

foregoing proof is not affected. It only needs to be checked, as has

often been done, that McCarthy's truth functions, restricted to

[true, false] , are the classical not, and, or, implies . |

Example AE; This we recall is the general case of a word algebra as

source language, AE = Wß(X) , with the compiler producing "Polish

postfix code" for a stack machine. For notational simplicity we assume

a single binary operator, say Q = [+ } , but it will be seen that the

76

feMsr^vrt^^
\JL -it* !_». -L. VA &11 I

proof is applicable to any number of operators of arbitrary non-negative

S

arlty. We have, for xeX , K: x H I Lx , and the operation in A£

H

is given by:

AE+(P^) = (s«)—(?)—^IH^S,"^—Q—^VJj:+ ^V;
s H

AE is generated by the set {K(X) | xeX} .

For the semantics of AE we may take the meaning of " + " as given

by any {+ }-algebra A , with carrier some set (of "arithmetic values")

A , and we assume an interpretation of the variables i: X -• A . We take

S to be an algebra isomorphic to A , but with carrier (1 -• A) , and

operation

S + (s1,s2) : 0i-A + (s1(0),s2(0)) .

We may explicitly define an isomorphism h: S -• A by

h: s H» s(0)

The semantic homomorphism cp. may then be defined as the unique

horaomorphism ! AE -* S such that

cp ^ X = h"1»!

We now construct our machine 22_i • ^s s^8-^613 will be "stacks",

i.e., finite sequences of elements of A . Denoting the set of all such

sequences by A , we will have:

Tni: {+,Lx,Ly, ...} - (A - A)

The effect of any of the various operations ^i will of course
 Lx

be to extend the current stack by one element, and the effect of ^_i

will be to replace the top two elements by a result (for a k-ary

operation this would be the top k elements); the precise effect of

the ffii -operations must naturally be chosen to reflect the semantics

of AE as follows:

O

For xeX , ^i^ : ^ ... am> i- (i(x),ar . • ^am>

(ra > 0; i.e., ?7(iT is total) ;
LX

©

Wl+
: <a1,a2,a5, ...,am) H (A^a^a^a^ .. .,am>

(m > 2; i.e., ^i is not defined on empty or unit stacksJ .

Our choice of ^i and the set {S,H} of distinguished nodes for AE

gives for the homomorphisra \|f. : AE -» R

^. : P i- (ac(p®^i)) J ({S,H}xA*)

|R| is the image of |AE| under i, .

For any PG |AE| , the product p O ^i is monogenic, and

Proposition III.l applies to give:

P (g) ^i computes a partial function from {S} xA to {H} XA

This fact and the construction diagram for AE enable us to give an

explicit expression for R :

O

R + (P,Q) = its>H}xA^ UP;({HHS}X1A*)?Q;(CH HH]xSi+)
'.,^3

78

We may define the decoding function 6 by

e: 0 M (S,<)) (() is the empty stack),

d: (H, (a)> »-a ((a) is any one-element stack),

6 : Q i-» doQoe

We encounter an interesting difficulty, however, when we try to

prove 5 a homomorphism: that 5: P »-• s , 6: Q •-• s does not by

itself suffice to prove 5: R + (P^Q) H S+(s ,s) ; the mapping 6

throws away information which is in fact essential to the correctness

of the compilation, namely that for we |AE1 , H(W) ® 57[1 , started

with any initial stack (not just the empty one) will halt with

cp.(w)(0) adjoined to the top of that stack. Hence we must first

prove inductively:

Lemma: For we |AE| , and Q = t.0K(w) e JR) ,

Q: (S,<a1,a2, ...,ara)) - (H, (b^,.. .,bn>)

iff (a^ ...,am> = (b^ ...,bn> and b0 =(pi(w)(0)

S

Proof: For weX we have immediately, by H: w H I Lw and the

H

construction of "pyi ,

Q: (S, (a^ ...,am» M <H, (iCw)^,.. .,ara)>

= <H, ((p.(w)(0),a , ...,a)> . |
i -L ra v

79

Xi

i^i

•■i
1>1

tmiMM!MiM£ßiÖi^^

$

s\

I I» v

0
."»0

.vi

Now suppose the lemma holds for u,v e \AE\ , with P = ^.OK(U) ,

Q = ^^(v) , and w = AE + (u,v) , so that \|/. oH(w) = R + (P,Q) . Then

we have:

R + (P,Q) : <S,<a1,...,am>) Ä <H, (9.(^(0)^^ .. .,am)>

[H MS}xl.
I &-> <S, (^(^(0)^^ ...,am>>

Q
<H,<q)i(v)(0),(p1(u)(0),a1, ...,ara>>

[H HH] x^i +

I > <H,<A + (<Pi(u)(0),9.(v)(0)),a1,...,am>>

= (H,<cpi(w)(0),a1, ...,am>> ,

o-nd our lemma is proved.

The lemma essentially completes our correctness proof; for

w c |AE| we have

6oi.oK(w) = e;(ij/. OH(W)) ;d

= [0 H <S,< >>};(^.0K(w));[<H,<a» i-a} .

Therefore,

SO^OHCW): 0 ^ <S,< » 4 > <H,<cpi(w)(0)» H q>i(w)(0)

that is,

6o\t/.oM = cp.
1 i

(and it is straightforward to verify from this that 6 is indeed a

homomorphism) . |

60

X. Stores and Assignment

In this chapter we will consider a simple form of the problem of

languages with assignment. The simplifications we make to the problem

are as follows: we suppose that our "variables" (in the programmer's

sense) are both simple and static -- i.e., we neither consider arrays

or structures, nor do we allow any declaration mechanism; all occurrences

of the same identifier will refer to the same store location. We will

also simplify the solution by confining ourselves narrowly to a "language"

in which single assignment statements are the only programs; the compiler

composition theorem will allow us to apply the result of this chapter to

languages in which higher-order program structures are built up using

assignment statements as constituents. Unfortunately, the compiler

composition theorem will not be adequate to give us our assignment

statement compiler on the assumption that we have already a compiler

for right-hand-side expressions. We will indeed assume that the

problem of compiling right-hand-sides has already been solved, but we

will need for our proof some specific assumptions about the form of

that solution which will become clear as we go on.

The present chapter will be divided into two parts: first, by

assuming a target machine with just the operations we need, and by

describing a trivial compiler, we will prove essentially the triviality

that an assignment statement may be executed by first evaluating the

right-hand-side and then storing its value; second, we will make the

existence of this target machine more plausible by showing that it can

be modified (and that a further compiler can be composed with the first

81

to obtain equivalent effects on the modified machine) in such a way

that it factors into two components which are recognizable as a store

and an arithmetic unit. Furthermore, the store component will be seen

to factor into individual "location machines".

For the first part of our discussion, then, we assume the

existence of an Q-algebra L of "right-hand-side" expressions,

generated by a set X of variables and taking values in a set A ;

and we suppose that we have obtained a compiler H which yields a

family of commutative diagrams, one for each interpretation

i: X --• A , as follows:

^i

S <-

"> L

*i

R

We may suppose that

la| = (1 - A) ,

and that each (p is the unique homomorphism satisfying, for all xeX ,

(p.(x)(0) = i(x) .

We further suppose that L is an n-algebra of r-BRAs (for some

set r) with set of distinguished nodes {S,H} ; to indicate this fact

we depict the effect of K schematically by

S

H: w »■

82

^^ft^ft*;^

Each t|f is determined by a machine (f-BRA) ^i ; we make the

assumption that all the ^_i have the same carrier M , so that we

have:

^i: P M (ac(p $ fln)) 3 ([S,H} xM)

The homomorphism & is of course determined by functions

e: 1 - {S,H} xM and d: {S,H] xM ^ A ; we assume that

e: 0 !-♦ S,m
o

for some fixed initial state m eM , and that d is defined only for

arguments of the form H,m . We may write the effect of 6 as

6: R M doR(S,m) .

Our hypothesis of commutativity now appears as:

[dc(4rioH(w))](S,mo) = (l>i(w)(0) .

It appears that these assumptions typically do hold, or can easily

be made to hold, for languages of expressions whose values depend on an

interpretation of the generating set but not on a choice of initial state;

note particularly that they hold for Examples AE and BE.

We now define the language L1 of assignment statements to be

simply the set of pairs x := w , with xeX and we|L| . L' is

trivially an algebra: it has no operations. (Note that we write >•

" x := w " merely as a suggestive syntactic alternative to " <x,w> ".)

We have now to construct a commutative diagram:

85

%

I

^:.v.>.--1^ .\.Y .> A >lv..>^\v\>^:.\-/.s-.-A>\i,\%Vr.%\>;>,.-..'.-.-.:/.-,".:.--.;.-.-.V.vV.".-■l-,a%i-J^ W'--L^-:,x-,'lv\-»""/,>.JA%\:,Avi-sV,.\

iT.'.r-'Tjr'j

^

LVV-

m

^

HS

iv.

with cp1 an acceptable semantic function for assignment statements;

H* will then be our desired correct compiler for assignments. Note

that because L' has no operations, to require that the arrows of the

primed diagram be homomorphisms is merely to require that they be

functions. Likewise we need not bother to distinguish between the

trivial algebras in the primed diagram and the sets which are their

carriers.

Our definition of the semantics of L' will be conventional:

we regard the meaning of an assignment statement as being a transforma-

tion on states, and we identify "state" with "interpretation of the

variables", so that we have S' = (X -» A) -» (X - A) . The effect of an

assignment x := w should of course be to modify the value of the

state at x so that it assumes the previous value of w ; therefore

we naturally define cp' by (for i: X -A and yeX):

(p'Cx := w)(i)(y) = if y =x then ^(w) (0) else i(y) .

As an abbreviation we may define a function, "assign", by:

assign(x,a,i)(y) = if y =x then a else i(y) ,

and then write:

9,(x: = w): i v-assign(x,(p. (w) (0), i) .

Qh

:a-:^v-^/x^

o

The compiler we will need, K' , is trivial, as was promised:

S S

given that H: w i- fw^ , we define H': x : = w »- \y

we see that the operator set of our new target programs (and hence of

the new target machine, ^) must be r U {STx | xeX} . We shall

define ^ in the standard way by ilf = p'oacojt' , with

it': P H P ® tfJJ and p': R H R ^ ({S,H} X | Sj.|) . Even before the

action of ^J has been defined, we can see the essential property

f H' (the argument was gone through in detail for Example SS and

need not be repeated): we will have for every statement x :=w e L' ,

(*) fcK.(x: = w) =1^H}xl2Ll| U {S,mHS,m];(f OH(W));({H^H}X2L'STX)

The way to our desired result is now clear: we need to combine

all the 77U into ^J , by taking |^J | = M x (X - A) , and defining

the action of gj for 7er by

fjiy. m^i M m2,i iff ^i : m^^ M m2 ;

this will evidently give us, for the evaluation of a right-hand-side

on V ,

(**) t,oH(w): <S,m,i> H <H,[{H,m Hm}o(ti»H(w))](S,m),i> .

We then define the operations ^L for xeX in such a way as to

store in the appropriate "location" of the (X -« A)-component that

element of A represented by the state of the M-coraponent we have

arrived at; that is, we define:

85

.-,;

'. - i.

l

'/-'•' .'•''- ^

(***) ^-'STX1 m'i H "i0»assign(x,d(H,m),i)

(It will be convenient when, for example, we come to compounding

assignment statements, that the execution of a store operation

returns the M-component to its initial state. If we had been more

specific about the structure of M j we might have been able to

specify the action of ^_'STx on M more conservatively, for example

^ to remove only the top element of a stack.)

The correct definition for 5' is now evident: 6': R M d'«Roe«

where e«: 1 M <S,mo,i> and d': <H,m ,i> H i .

The correctness of K' , that is the commutativity condition

S'O^'OH- = cp. f is now easily checked. We have by definition:

tp'Cx.^w): i M assign(x,q).(w)(0),i) .

But,

8'o^-oH'fx : = w): i H [d»«(t'OK'(X :.w))](S,m ,i)

= [d'o((^'oK(w));({H -*H}xE:sTx))](S,mo,i) (by (*■))

= ['i,'>({Hi-H}xE:sTx)](H,[{H,m ^m}o(1|rioK(w))](S,mo),i) (by (**))

- ci1(H,mo,assign(x,[do(i|fioK(w))](S,mo),i)) (by (*#*))

= dI(H,mo,assign(x,(pi(w)(0),i)) (by assumed correctness of H)

= assign(x,<pi(w)(0),i) . |

With an eye to the application in Chapter XII, in which we shall

want assignment to both arithmetic and Boolean variables, in the latter

case coercing arithmetic values to truth values, we note the following

86

■-3. ~w-r:-«-r-«-r—VT" !--■ i-vr^r^i t"% *ä VW'WTK^Vvrw* KT^ CWT^ W M ^" M M, J"! ^ ^T^^^^f^^^^^^^Wil^

evident generalization (by no means as general as possible) of the

result just proved: Suppose that we have an additional set of

variables Y , disjoint from X , which we wish to take values in a

set B , in general different from A , and that we have a function

rep: A -* B which allows at least some of the values in A to stand

as representatives of the values in B*. * Then we may define an

augmented language L = L' U {y := w | yeY and WG|L|} , an augmented

set of state transformations S = (X - A) x (Y - B) ^ (X -. A) x (Y -• B) ,

and if we define a modified assign function, assign , by:

if xrX then assign (x,a,i)(z) = if z = x then a else i(z)

if ycY and rep: a •-• b then

assign (y,a,i)(z) = if z = y then rep(a) else i(z)

(assign undefined otherwise)

then we may for our semantic homomorphism cp write as before:

qp (x :=w): i M assign (^(.jlxv1)

It is evident that by taking a suitably augmented target machine

+ + + +
22 we can define H , t , and 8 as before, and again get a

commutative diagram. The necessary change to the target machine is

simply to take |^_) = M x (X -* A) x (Y -• B) , and to provide ^_

with additional operations ^Lqm for yeY , defined by:

77i_ : m,i H mo,assign (y,d(H,m),i)

whenever the latter is defined.

The store operations of the machine WjJ are similar in effect

to instructions of many real digital computers; in the synthetic example

87

V»

(...' t

^^^ASL^2,sÄMt^^..--i-iZs:i:^,:.^

.n«^B-lÄ-l«-TVT »^. w-^v ^r^ ^ T T7-r-«_r-_ »^y r-JT »ZT wri ^ ^-n ^.' ."j i:^.'T"j"".i v \',y',-?v,^,\-a\"JrN'Ti'VjVTiVVA^.'J'TTL",. IK L'.-?,. LVl!,^

V.'

of Chapter XII they will be assumed to be executable, together with

|^ load operations like those introduced in Example AE, by the final

target machine. The remainder of this chapter, which will carry the

compilation of assignment statements one step farther, forms an example

of modelling machines by BRAs, but is perhaps not directly relevant to

practical compiler-correctness proofs.

The machine ^J which we have Just developed, although its

operator set is analogous to the instruction set of a typical digital

computer, is theoretically unsatisfactory because its structure -- of

a store combined with an "arithmetic unit" -- is not apparent. Moreover,

the assign function used in the definition of fljj is mathematically

rather complicated (although familiar to programmers); we would like

to not only isolate a store component but analyze it as an assemblage of

"locations".

We proceed to meet these two criticisms by introducing a modified

machine ^ , and a compiler H" which carries programs for Tft'

into programs for fl£ 5 once we have shown H" correct, H'^H'

will be a correct compiler for L1 with f£_ as target machine, and

Ml wil1 be defined as a product of meaningful factors — "arithmetic

unit" and "locations". The proof about K" will be simpler than a

general compiler proof, because we will have |#r 1 = |^_' | and also

for all L'-programs p , \K"{P) | = 1P| ^ and we will be able to show

that S (K,"(P) ® %£) = E(P ® #[_•) , so that no argument will need to

be made about $ic (recall that ac = (JhcoZ)), restriction, or

decoding.

88

V % >

i j n -M - ■ ^'u F-H . 'i. ■ v ■ i ■ u F u ■'.: P i • »'n I'M iv i. n. i'i, \m uv r^11W^ •' \ K^KV*X K T "^ »^ VW^^^l^W,re"^'l'^f?',?',

IP

Before we start we must make some further assumptions about the

family of machines 77[i : in essence that they really do only differ

accordint; to the values their respective interpretations give to the

variables in X , that they treat all variables alike, and that at most

one variable is "read" by a single operation (these restrictions are

met by, for example, the machines for Examples AE and BE; in more

complicated situations in which not all the restrictions were met, one

would expect to need a more complicated construction than the one we

shall give here) . Formally, we assume (recalling ^i : r -* (M -• M))

(i) F = rG U (Lx 1 XGX] (L for "load") ;

^ii) Ully = EJL for y^0 and for i^J: X -A ;

(iii) there is a function £: A. -' (M - M) such that for any i: X -A ,

^i = l(i(x)) .

(it will be evident how the construction which follows could be

extended trivially in case there were many load instructions for each

variable rather than one. On the other hand, it is also clear that one

kind of load instruction is enough: we could adjoin a "memory buffer

regifter" -- i,«., make the carrier of the ^_i be AxM rather

than If -- and then split each variety of load operation into "load

memory buffer register" folJ^wed by a suitable new r -operation.)

The idea behind the construction of ^_ is very simple: it is to

split each operation Lx into a family of operations Lxa , one for

each arA , each Lxa c br? capable of loading only the specific value

a from location x ; and similarly to split each operation STx into a

family of operations STxa . Even this intuitive description makes it

■

89

TH rn -X^"^. ^IFH^^^TT^V^ ^" t^ L^TLTf ■T* X. i ^ i TTTT'TTTTrnrT^TrTTT^

K\V\

clear how we want H" to behave: it has simply to split each

operation-instance of Lx (respectively STx) occurring in a program

into a bundle of operation-instances for the various elements of A .

We may picture the process of compiling with K" as follows:

(H^M Lxa. . I Lxa^ ••• I

fat

(and a similar diagram for STx). More rigorously, if not very

transparently, we can define K"(P) for any L'-program £ by

1*"(P)1 = lei ,

*"iP)7 = Sy for ^ero ,

H"(P)

H"(O)

Lxa = ^Lx f0r XGX
 ' aeA ' and

STxa = ^STx for xeX > aeA *

Now we see that if we can define 7H" so that

(+) %l7 - niy *°* y^0 >

^ U ^:T,xa - 2L'T.V > and
aeA ■Lxa Lx

^ ^STxa ■ a-'sT mx *

then we will have at once our deairod r^roJt:

90

^M^ta^M

. ^.■»•.». f. wvTTvvr ,-».- u-M..!...,._. F.i i.i ' II-, ip IIBI^. t 9 i tmw^^w^^m^m^m^a^^mftmm^tfmfm^m^mm^mm^m^t^m^mtfmii^t

•

72 (K"(P) « ^r) = i) H"(£) x n"
ycT U[STxa,Lxa}

>rru{STx} ' /

-7

m'

all we need observe is that (+) and the definition of H" imply:

f ® ^£x : P^m M pSm' iff for some aeA, H"(P) ® Slixa1 P*m ,-, P1»

and the analogous biconditional for STx and STxa . But it turns out that

we will get exactly the VT we need by defining it as the following product:

jT' = n^i , where | f? | = M , |i| = (X -. A) ;

%y = lUly for 7er0 , 3Lxa: mMi(a)(m) ,

^STxa: m ^ m
0 iff

d: H*m H a 5

-7 " "Sc - A for 7cro ' ^Lxa: i M i — i: x ►"* a ^ and

^STxa: i ^ assiSn(x*a^i) •

To verify (+), we simply check:

{% ® S)7 = Viy *\ _ k = fi^ for 7ero ;

and

that is,

U 1h® &,: m, i H i(a)(m),i iff i: x »- a ,
a^A

U ^® 4^ m,! H £(i(x))(ra),i ;
aeA

91

Eäa^aMa^M^

^^3tt:.w^"-r">-^m--r «r-?^>." Ht^rv^^y r^-^^* r^ ^-r-^- '^.^^■rwry.-Trs^.yFy»^^^"^^!^

and

U §®c9qrrva: m,i H m ,assign(x,a,i) iff d: H,m M a ,
aeA -o-Lxa o

that is,

" ^® i5qrpv„: ni,i Hm ,assign(x,d(H,m),i) . ■
aeA -o-L^a o

We r.ow have our two factors of ^" : ^ the "store" and ^

the "arithmetic unit". We claim, moreover, that S is the product of

one factor for each element of X , which it may be appropriate to

call a "location machine", namely:

J = (gl jjx ,
xeX

where

1£C| = A ;,

^ = 1A for 7ero ,

and

^va = 11! y = x the" [a ^ a] else 1 ,

^STva = i£ y = x then [b H a] else 1 "A '

The verification of this decomposition is a trivial exercise (making,

of course, the necessary identification of the Cartesian product

T{~ A with (X -* A)).
xeX

It is evident that we can carry through this second part of our

construction in essentially the same way in the case where we have an

additional set Y of B-valued variables, to get an augmented version

92

3- _

6

of g" which factors as Äf 8 / • Here fi+ is defined the same

way as jj? ^ but with the operations

^STxa: m ,-, ra
0 ill d: H^m *-* a

now existing for all xeXUY ; and .9 is defined the same way as s ,

except that |/ | = (X -» A) x (Y - B) , and now

-STxa: X H a381^ (x,a,i)

for any x e X U Y .

Furthermore, S decomposes into all the factors of ^9 , one for

each xeX (with the trivial modification that the additional operators

STya , yeY , each denote the identity operation lfl) and into

additional factors ^ , one for each yeY , each of which has

lc9y 1 = B , all operations the identity L except for:

^STya: b H rep(a)

(note that this is the empty relation if rep is undefined at a) .

93

^mrnvj
.>.>.,->. k> L-w r. w irm '

■*<Q "v"' .'"vjV '"."WT.*'*^ r.,"'.' v A ■3^>v ;.■

XI. While Statements

The purpose of this section is to show by example that the style

of compilers we allow -- BRA-producing homomorphisms — easily and

naturally handles (as we should expect) the sort of programming language

construct which is customarily defined by a rule for replacing each

instance of it by a system of tests and branches. A typical instance

of this sort of construct, and probably the simplest, is the while

statement (familiar to students of Algol-like languages, even though

not exhibited in its pure form in Algol 60). Note that whereas the

ordinary theoretical treatment of whiles (see, for example, [Hoare 69])

takes the equivalence of the while statement to a loop as given and

proceeds to derive the consequence that the function denoted by a while

statement satisfies a recursive inequality, we shall be proving the

same thing for an ostensibly different reason — i.e., we shall take

the recursive semantics of whiles as given and proceed to show that the

compilation of whiles as loops is correct.

The present context may also serve to exemplify two other points

of possible significance. The first is that there need be no incompat-

ability between an algebraic semantics and an axiomatic one. That is,

we may give axioms for a semantic algebra without determining it

completely, and prove from them properties which must be true of any

algebra satisfying the axioms. (This is, of course, standard

mathematical practice; we lay stress on it here only because most of

our algebras have been explicitly defined.) The second is that even

without use of the conpiler composition theorem we may in certain

<*

g&m<^^i^^

m

circiomstances claim that correct compilers for two languages

automatically yield a correct compiler for the omnibus language which

combines their "features" — namely in the case that the two compilers

are sufficiently compatible, in a sense which will become apparent.

We take then L = ^^^ p ^ ^^ q ^ _}(X) , where

X = (x^y,...} is a set of elementary statements, and P = {p,q,...}

is a set of predicate expressions.

We want S , the semantic algebra, to be one of relations on

a set A to itself. We assume an interpretation i: X -» (A -x A) of

the elementary statements as relations on A j and em interpretation

J: P -• (A -• 2) of the predicate expressions as predicates on A . We

specify thf, operations of S incompletely by laying down for each pcP

an axiom, namely the following recursive inequality: >:

W %hilepdo(f) 2 (analnot j(p)(a)} U ((a H a | JCpKa)};^.^ p do(f))

and we require cp , the source semantic homomorphism, to be the extension

of i to a homomorphism : L -• S .

Forseeing that we shall expect the target machine to be able to

evaluate the elementary statements and predicates directly, and knowing

the shape of while loops, it is easy to specify the action of the

compiler on X :

H: x -

and to give the operations in L by the following diagram for each peP

^a^^^:^^
IJLVJ

TT-vT-a-T i-v ■ ^i T v! v ^.Ttl»,1»« ^«^ k ^/» ■lKU^."WV« J »J^ .'»VT"."^ IT., ^-vrj^"1,.'VIJI ',■! • " '' I1' .' I^J."

-while p do^ '

Evidently the target BRAs (hence also the target machine) are to

have operator set X U P U [p j peP} .

We may now describe the target machine % . Naturally we take

l%| = A , and for xcX , 771 = i(x) . We use the device described

Example 1.2 for modelling predicates by partial identity functions

("Karping"), and require, for peP ,

W; = {a H a | j(p)(a)} , S" = {a M a | not j(p)(a)} .

For D , the domain of the relations computed, we have

tS,H} xA , and this suggests the already-familiar choice of 6: r (-» d»roe

^iven by d: (H,a) H a , e: a h» (S,a) . 8 is evidently an isomorphism

from R to an algebra S' whose operations are given by

S' , (f) = do(R , .. , (d"1 of oe"1)) o e .
-while p dov ' v-while p dov "

S being only specified as satisfying the axioms (*), all we need prove for

the penultimate step of our correctness proof (closure of the diagram) is

that S' satisfies (*), and hence is a suitable S . But this turns out

surprisingly easy to prove, once we make the observation that for any

BRA B we have the simulation o: B" -* ß' , where /? • is

- h'l ti ($ anci @" is tlie same looP "uni'olle<i" once, i.e..

96

m?m^^mm^s&^m:y^<:<^ m&

-I— -r» 7 .'- • ■.« -, v-T • Ti -.■-.■•.. - »• v" .-^ j" .'•'. ^,-» j i . • r- '■•. ^ji j» '."»'"t l w,iv: 'f"r'T "s • ir 'f i^i •?•&!.•* ii^if, jp>i jp^r^vfvp^^^r^^^pwi^jnTPn

rw.H

a:

where a acts as indicated by the dotted arrows, and in addition, of

course, coalesces the two.copies of § into one.

It is easily seen that if we follow the execution and decoding

raorphisms around to S' , we will obtain for the relation computed

by B" ,

6»t(0") = {a Ha|not (j(p)(a)) U ({a ha | J(p)(a)};8.^(^);6o^(^)) •

However, decomposing the target semantic homomorphism as ^ = poacojt ,

and recalling that it and ac are functors, and hence preserve

simulations, we see that from the simulation of flow diagrams noted

above follows

axlA: ac^"«)^) - ac(/3' ® ?g) ;

i.e., (by the definition of simulation)

ac^" ® 2!);(axlA) c (ffxl*)|l»(# ® #0

But, as can be seen from our definition of a ,

97

:äte&&ao;>^:to^

"^—■-"••.■•.■■-»-»-• '«.'• ■■.' • ' v". ^.iw»^"»« *i. i'.' ■ •"•■.i • . ■ i"t»i >■ ■■■ ■»r^'^F^^^^rwf^^F^wT^F'WVW?*?*^*^'*'^*!

(axlA)t|{S,H}xA - l[s>H)xA ;

hence we obtain in fact

^(/»") = ac(^" ® ?70^S,H}xA

C ac(^' ®^)^(S,H}xA = f(£») ,

and following 5 from R to S' we at last have b 0^(13") c6o^(^«)

which is Just what we wanted to prove; we are Justified in taking S'

to be S , and we have our closed diagram of homomorphisms.

The last step of proving correctness of our while statement

compiler has been done already in example SS; it consists simply in

observing that <p(x) = i(x) = 5O^OH(X) for XGX . |

In fact the similarity between the current example and example SC

has more far-reaching consequences than merely to save us redoing a

step of a proof. Every pair of corresponding homomorphisms in the two

examples are extensions to homomorphisms of the same function on the

generating set; moreover the two target machines agree on their common

operators; in short, there Is nothing to stop us claiming that we have

given a (disconnected) proof of the correctness of a single compiler

for a language which has as its operations the formation of both

compound statements and while statements. It is this combined language

which will be meant by references below to "the language of Chapter XI".

What we may conclude in general is that when there is no conflict

in the compilation of two algebras (action of the compilers the same

on generating sets, compatible mechinen, same restriction, same

decoding in both cases) then simply from the fact that a proof about

homomorphisms for multi-operation algebras is Just a proof for each

98

mmmm^Mm^mMtt^^^

^vv—""-«■'•,-'J-« •■<• ^-v..■•—•-•■ WT"»"»-.».^ i- <p">."■.• .p'.i <i•'■•■■^ v"i'vi.•iir«T^^T^p^fTv^^^v^?^f^"V«f^«^wfvwwOTi

operation separately, we have for free a compiler for the combination

of the algebras. In more prograraming-language-oriented terms, under

these conditions we obtain automatically a compiler for a language in

which mutual recursion between two constructs is allowed, although

we have apparently only proved compiler correctness assuming that either

of the constructs could be used in isolation.

99

i^M&2^

XII. Tin Exemplary Synthesis

The aim of the present chapter is to illustrate the utility of what

has gone before by usinc the compiler composition theorem to tie

together most of the previous examples of "single-feature" languages

into a demonstration of the correctness of a compiler for a somewhat

"realistic" language — very loosely, a language "with the features"

of whiles, sequencing, gotos, assignment to simple variables. Boolean

and arithmetic expressions. It cannot be over-emphasized that the

achievement of this one proof is not to be considered as the total

accomplishment of the present work; rather the synthesis to be performed

in this chapter should be understood as an advertisement for our

algebraic approach; it is meant to exemplify a class of possible

syntheses which could be made easily and naturally with the tools we

have developed. (Admittedly, we have in our examples treated only a

very small set of language fragments, and will here assemble essentially

all of them; it is not evident that a synthesis interestingly different

from the one we shall show could be performed without first inventing

some new "single-feature" languages as raw materials.)

We proceed forthwith to an informal description of the language

-synth with which we sha11 deal. The following parameters of the |j

language will be left unspecified: the choice of a domain A of .V

"arithmetic" operands; the choice of a family of "arithmetic" operations

on A and of a set Q of operators to denote them, the choice of a

(partial or total) function rep: A =• [true,false} by which certain

arithmetic values may be used to represent truth values, and the choice

of a set V of arithmetic variables and of a set U (disjoint from V)

100

\

- -"7, >-, '~TW~\ ^n-.'T~w!.v »■i-, v\;,f'.1 » '. k •• fis ■ l."JV "B ■»l."/."lljyi f-JIj.'^l,' L'!'If^V.^mM

of Boolean variables. (For brevity we shall henceforth throughout

this chapter denote the set (true,false} by 2 .)

Programs of Lsynth will be finite, multi-entrance, multi-exit

(Karped) flowcharts. The tests will be of the form p/\p

where p is any Boolean expression (as in example BE) built from

variables in U . The conmands of. Lsynth will be arbitrary nests

of while and conpound statements built up from assignment statements

of the form x := e , where x is a variable in V U U , and e

is an expression built up, as in example AE, by "arithmetic" operators

from the variables in V . The while statements are to admit the same

set of Boolean expressions as may appear in the top-level tests of

h **. • —synth

To restate the foregoing somewhat more formalOy, and in the

bottom-up direction, we define the following languages;

^arith ^ ^f/^ ' that instance of the language of example AE got by

taking the particular sets n of operators and V of arithmetic

variables;

-assig = [x - e IxeUUV and eejl^.j) , that instance of the

"augmented" assignment language of Chapter X got by taking

^arith as the la'nS^aS^ of right-hand-side expressions, and

U as the set of "extra" assignable variables;

^bool = -{-!, A , v, =)}^ ' that instfmce of example BE got by taking

U for the generating set;

^wc = -(D} U {while p do | pcjl^ D^assig^ ' m instance of the

language of Chapter XI;

101

wmmtmmmmmmmmmmxm^^^^^

r>-n"w "W"! ^r» L-^i-wi-wry i^ ti; "^ I ^ ' ^ f ^. •^."^. i «. ■' ■. ■. ' ■. ■.I*.1*"»

^ynth := an alsebra 0f M lJ l^booll U ^l^lLbooill-BMs , with

cuitable construction operations for building up flowcharts — the

choice of these constructions turns out to be a rather special

problem, whose discussion we defer.

The semantic homomorphisms for the various intermediate languages

are the appropriate instances of the ones we developed earlier:

For L ... we have for each function i: (V -• A) x (U -• 2) a homo-

morphisra 9. v: L ... -A , agreeing with i on V , where A

is the Q-algebra with carrier A whose operations are whatever

"arithmetic" operations we may have chosen.

For L, , we have, as defined in example BE, a homoraorphism

(p. „: L, , -B2 for each i: (V -► A) x (U -• 2) , agreeing with i

on U , where B2 is the {-u A * V > :3 } -algebra of truth values

with the classical operations not, and, or, implies.

For L . we have a semantic function —assig

^assig1 Massig "* ((v ^ A) X (u ^ i) ^ (V - A) x (U - 2)) given by

^assig^ := e^: i H assign ix^i]Vie)^) > where

for xeV , assign (x,a,i): y M if y = x then a else i(y) ,

for xeU , if rep: a H b then

assign (x,a,i): y -• if y = x then b else i(y) ,

(assign (x,a,i) undefined otherwise),

and where rep is a (partial) function which interprets certain

£ arithmetic values as representations for truth values — e.g. we

f 0 - false l
might have rep: / / .

^ 1 -. true J

^ 102

L^Anfc JL^iiH M P-«tt iii'*i

r-TT-.T.-»-T-»-c-m.-.. -L-l-1.-'. ■■'!]-■ •-«■•- ■"■'-.^ M-'»- ;• ^ • _■ .■ ' .■ ■;■ Ml .■'' J"" .• "'^ I U" ." ' i"J !.■ ." , .'T^^'T^^^VCT^

(The idea is that an operation such as < , which we would

naturaUy think of as operating on two arithmetic values to yield

a truth value, will here be thought of as yielding another

arithmetic value; the latter will be appropriately interpreted

by rep on assignment to a Boolean variable. This device allows

us to assimilate predicates to^ the ordinary operations of our

arithmetic algebra A , and in the implementation whose correctness

we shall prove, it will model faithfully the commonly existing

situation in which representations of truth values, as held on the

stack, are indistinguishable from representations of numbers. All

the same, the necessity to introduce rep is displeasing and

suggests that our algebraic notions are too rigid; this problem and

the possibility of its solution will be discussed in the conclusion.)

For L we require a semantic homomorphism qp to an algebra of

partial functions on (V - A) x (U -• 2) to itself. This will

simply be an instance of the development in Chapter XI, where

the semantic homomorphism for a general language of while and

compound statements is defined (or rather partly defined and

partly axicmatized) in terms of interpretations for elementary

statements and for Boolean expressions. We have already an

interpretation of the correct type for our elementary statements,

namely:

Massig1 Massig - ((V - A) x (U - 2) =; (V ^ A) x (U -. 2)) .

We need also an interpretation:

J: ^bool ■* ((V-A)x(U -2) -.2) ;

103

t^Ma^^^fr^

r^j-^-'.T-wjwTTsr-.

we may obtain the function we want by interchanging the arguments of

the semantic homomorphism for L. ; that is, we define:

J(p): i^nu^P) for each PGllibooll •

Finally (since L ,, is to be an algebra of BRAs) we may describe

the semantic homomorphism for L ., » <P ., : L ,, -♦ S , as a
^ -synth ' ^synth -synth - '

composition ^g^pj+y. = p»acojt , even though the constructions of L ..

(and hence as well the operations of S) are as yet undecided. We

define the source machine, „f , for L .. by taking

\j\ = (V -A) x(U -2) ,

4: i M(pwc(s)(i) for Seliwcl
and

4= Ci^i|9b00l(p)(l)} , ,>-= [iHijnot Vol(P)(i)}

for P^l^ooll '

We then have « defined as usual, for Pe |L .. | , by it: P h» £®^ •

Since we wish to allow our flowcharts to have an unbounded number

of entries and exits, we define a set Sh = (S^S,,...} U {H ,11..,...}

containing infinitely many distinguished start and halt nodes,

and we shall insist that for PG|L ..) , we have SH c jp) . It is

then natural to take for our restriction homomorphism:

p: H t-Rj(SHx \j\) •

Evidently the semantic algebra S will be one of relations on

SH x (V -* A) x (U -* 2) to itself.

We have now to show that we can construct a correct compiler,

K^ .. s for L ,, by compounding our previous fragmentary results.

10^

^M&fc^::^:^^

i -■• J»i. »IJ» juviuij» I ■ •<■ fi.^ iTi{»i^ [..i^i ■ i .. mitm ill ,pii.p TV<^«9P^FWIi^^P^V«T<^^VVW^^Wm?VT*T^Vm

We have immediately that H._ , the compiler for arithmetic

expressions developed in example AE, is a suitable compiler for right-

hand-side expressions which may be plugged in to the ("augmented")

construction of Chapter X. This will give us a correct compiler

Hoe,c.-i^ defined by assig "

Hassig: x := e ^

The target machine for L^gj- > which we may call flja , will have

carrier |^a | = A x (V -» A) x (U - 2) , operator set

Q U (Lx | xeV) U jSTx | x e VUU} , and operations as

defined in Chapter X and in example AE. We must, of course, suppose

that the operations flfa for u) e n do indeed apply A (recall A —a (0 «W—W .^j \ _

is the source semantic algebra for L |*u) *0 "the top k elements of

the stack (k being the arity of u)) and replace them with the result.

We have also, from example BE, (and with no further specialization

than taking the generating set to be U) a compiler H taking the

expressions of Lu , into {jTrx,jrx) xeU}-BRAs .

We now define a compiler K . (to be a candidate for forming

extend(Ka_b,Lwc)) which acts on, and produces, certain BRAs with

set of distinguished nodes {S,H,T,F} as follows:

105

F"r v<\h ll ' boul'

^-b5 */\
T F

H

and for sc II .1 ., '-agsig' '

a-b I I >
H

T F

The set of BRAs to which H , is applicable are suitable to

be run on the machine ^AB , where AB = |Lbool| U (P 1 Pel^^l} U liassigl

and we may take <p , the semantic function for the set, to be given

by

«P-K: gHlo(g«^|A®)J<|S#H^,F|x(V-»A) «Co -»2)) .

We -r-an work this out more explicitly, using the definition of J ,

as follows:

9 a-b t-
H

T F

= e |: X,i HY^' iff (X = S and Y = H

and i* = assign (x,(p.. (e),i)

or X -: Y and i = i') ,

<V a-b p/'Vp ItXfiHTfi* iff (X = S and i = i' and

(Y = T and 'Pi1u(p)

or Y = F and not «P^UCP))

or X = Y and i = i') .

T F
H

106

mmMmm^m&m^m^

The target machine, fl|ab , for K _b is the same as fl[a_ (the

target machine for K .) except that it has the additional operators assig ^

[JTx,JTx | xeU} whose effect is defined by (for mcA , i: (V - A) x (U - 2))

^ab : m,i H m,i iff i: x |-* true ,

^ab : m, i h m,i iff i: x j-. false . •JFx

As might be expected, the target semantic function, * ,., is Ta-b

given by

♦a-b1 2 H ac(e ® Mab) J({S^H,T,F} xA* x (V -» A) x (U -* 2))

and the decoding function by:

"S.

where

6Q , : R »-» doRoe ,

e: X,i -«X,<>,i and d: X, <>,i -» X,i

(for Xe[S,H,T,F} , i: (v - A) x (U -» 2) , and <) denoting the empty

stack).

We proceed to show that HO , (with (p , , * , , and 6 .)

satisfies hypotheses 1-k for the compiler composition theorem:

1. We have {S,T,F,H} c |H a-b and

{S,T,F,H3 S |Ha_b| AM1 , so Hypothesis 1 is satisfied.

T F
H

i

2. By identifying X,i with X, <>,i (<> the empty stack), we have

\j\ = (V - A) x (U ^ 2) c |^ab| = A* x (V - A) x (U - 2) , so Hypothesis

2 is satisfied.

:^>>::::lfc<^

i
5. For p = x := e , it is clear that

H
T F

5a-b ^a-b 0,ta-b^ = ^a-b^^ ' this is only a sliShtly disguised

form of the statement of correctness for K . . It may be
assig

noted that the operators JTx, JFx of ^ab are never obeyed,

as they do not occur in H, (O) ; we have in fact that:

5a-b0^-b0,ta-b^: X'i,-Y^, M£ (X*i-Y,i' or

X = S and Y = H and i1 = assign (x^cp.,. (e),i)),

which is exactly the behaviour of cp (p) .

s

For e- v/\ , we have somewhat more of an argument

T F
H

to make, because in example BE we took as target machine only a

one-state machine, modelling a single interpretation of the Boolean

variables. However, we may note that in fljab all the operators

JTx,,JFx denote partial identity functions (even total identities

except on the (U -« 2) state component) so that, as far as the

evaluation of Boolean expressions is concerned, 7^ab merely

unites a number of non-interacting machines of the sort defined

in example BE; it follows from the proof of that example that we

will have:

108

r^^y^v^v:^^^^

K

*a-b ",la-b'2): x'In'i -Vjm',!' i« m = m' and i = i' and

(X = Y or

X = S and Y = T and <p.^IT(p) or

X = S and Y = F and not <Pi1u(p)).

Similar^-, b&_h • i|fa_b
0Ha_b: X,i M Y,!1 under the same

conditions (omitting mention of m), and this is exactly the

behavior of 9a_b(p) . Hence we have satisfied Hypothesis 5.

h. For Hypothesis It. we have to show that, if * ^ (n): X,m,i H Y^m'.i1

with X and Y both elements of {S,H,T,F} and m, i e jgf| , then

also mSi1 e |^1 ; that is, if m is the empty stack, so is m1 .

S

For p = vy\3 this is immediate, since we must have

T F
H

g
mSi' = m,i . For g ■• jx : = e we have only to recall from

H
T F

example AE that it was shown that the evaluation of an arithmetic

expression starting with an empty stack yielded a one-element

stack, and from Chapter X that we defined the store operations so

as to remove the top stack element. Hence Hypothesis k is satisfied
■

as well.

We may now assert by the compiler composition theorem that our

diagram of ^^.^^^f'l^^^^ extends to a commutative diagram of

homoraorphisms, yielding a correct compiler extend(H b,Ii) for the

105^

^ttMii \ 'v ^; '^^■■K^.ü^^v:^:^^^^

algebra L^ of AB - BRAJB , with generating set

x := e

H
T F

xeVUU, ee|L .. I I ,

and operations

L^CD): P,Q H S[^P)^ES^-Q)^E) H

' ' T F^"

and, for pe^J ,

L (while p do): Q h -wc

F \ T V H» V1

^. y «^ s
H

„ #J v ^F

(Images under the just-given constructions of isolated T , F , and H

nodes were chosen rather arbitrarily. These nodes plainly serve no

purpose other than to render the compiler ccmposition theorem slightly

less cumbersome to state.)
A

We now need a compiler *.: L -» L with which we can compose
A

the extend(H , ,L) we have Just developed. In essence, the required

H . is just an instance of the general compiler for whiles and compounds

developed in Chapter XI, with JL .1 taken for the generating set,

and [while P do | pelL. ,1) taken as the set of while-statement building

110

:-:^^^^^^^^^

',>
operators. To make the co-domain of * come out to be exactly
A

L we must adjoin the isolated nodes T and F to the BRAs
-wc

)t (x := e) = x := e , and the isolated node H to the BRAs

i:

^rhile p j = 1/ Y» > ^ttt doing *so-plainly will not have the
— T F

in

slightest effect on the proof of correctness given in Chapter XI.

Composing, we may now assert that we have a correct compiler

Hwc = extend^Ha-b^c^0Kwh for ^wc ' Producing programs for our

final target machine 77?ab .

We now have to obtain from >t a compiler for L .. . This
wc w -synth

will be done by an atypical application of the compiler composition

theorem, in that no composition will occur: I;svnth ^s alreaäy a*1

algebra of BRAs , and our final compiler H .. will be simply

extendfn' ,L .,) where H' is essentially A m , but modified to v wc'-synth' wc ^ wc 7

act on suitable BRAs . (One could easily imagine removing this

anomaly by making L .. the target algebra of a compiler for a

more conventional programming language in which programs were linear

strings containing labels and goto statements.) Still postponing a

decision on just what algebra L th is to be, we will proceed to

show that the compiler composition theorem must be applicable, assuming

only that all the BRAs in the generating set of L .. , together

with any constant BRAs ^ it may employ in its constructions, are

of one of the forms:

111

,k'.\' i • \-.\M-VA.% ■-.v.-o•■TOO..-::<. jiijv<u\ vjv.i -. •f:>:*;v-:^s:±nr^yr>-y'yr^y'yy*yyryy:j^sfy^'^

H. H
J

or

• fa. • • /v
XIä ••• il. ••• n, •

with sell^j , ^l^booll * and without any implication that k > j

We denote this set of BRAs by X .,. . 9 synth

We specify HA in the obvious way by:

■..

*wc

and

wc

• • • xi <

p

H i ' * * Hh

Our target semantic function will of course be given by:

synth: 2 H ac^ ® MOt) t5 X A* x (V -* A) x (U - 2))

and our decoding function by:

Ssynth: R ^ R](SH X (V - A) x (U - 2))

(keeping in mind our convention that {i H O^i}: Is^l E l??;ab|

We recall that f-^^J £ H ac(p ® ^) ^(SH x (V - A) x (U - 2))

112

^^^-IMyiVUVlV LV v.'i-*Vf vmy, Ytn;r,(^ ■ i ^ v^ v> u-

K'i

i

EV.N

We may now verlfV Hypotheses 1-U:

Hypothesis 1, that SH c |H'(P) | for P^X .. , is immediate

by definition of H' wc

Hypothesis 2, that |y| c l^abl , holds as before by identification

of i with <>,i .

Hypothesis 1, that cpsynth(P) = 8synth »^^-K;C(P) for PeXsynth ,

is easily seen to follow from the correctness of K * together with
wc

what we proved about H a-b /\i
I

to establish Hypothesis 5 in

H

the foregoing proof for H_ , ; all that has changed is that we are

allowing the role of S to be played by an arbitrary S. , and those

of T , F , and H by arbitrary H. and H. .

Finally, Hypothesis h, that relations t|r th'>K'c^ * i^ a-PPÜed to

states with empty stack, yield only states with empty stack, comes as a

by-product of the application of the compiler composition theorem to

'a-b (recall that the inductive part of the proof of that theorem extends

not only Hypothesis 5 to the whole algebra, but Hypothesis h as well),

together with the already proved satisfaction of Hypothesis \ by

S

* a-b^a-b1 Pj

^
115

'^r^'s's'srs^ittJktitt-^^s^rs^j'^^^.-^^-ss .••■-.•-•^^•■.•.'■.--■■.^•.-v ■ •-•■-. T^^tfW.-. .•.■•.«

We may conclude, by the compiler composition theorem, that once

we settle on Lsynth , Hsynth = extend^,1.^ will exist and

be correct.

It remains to specify a set of constructions which will, from our

generating set for L ., , yield all and only the multi-entrance,

multi-exit deterministic flowcharts, where by "deterministic" we mean

that at most either one arc labelled with a statement from Ii , or a

pair of arcs labelled with p and p , where Pel^ij il > is allowed

to depart from any one node. (The restriction to determinism is quite

unnecessary to the success of our correctness proof, and is made in the

interests of realism: that is, we imagine that the "real" machine

modelled by Ihtio is only able to execute deterministic programs —

it may easily be checked that it will only be called upon to do so,

provided we keept the L -programs deteiministic.) It appears that

the following set of constructions will do as well as any: we take

for the operations of L .. all binary constructions derived from

kernels of the form:

q: SH Ü SH, - SH U {IQ,!^ .••}

such that

(i) every S. has at most one inverse image under q in (one

component of) SH 0 SH , which is of the foim S ;

(ii) every I. has either empty inverse image, or inverse image

consisting of exactly one Sv and one or more H. ,H. ,.. • ;
1 2

(iii) every H. has inverse image under q consisting of zero or

more H . ,H . ,
01 J2

11U

U-..:tVXVVwrv,v^v^vro»^..^.^v^^ ;•«-.'w v.- .n ■■■ i.-1-.«, uii ..^ . J .-.> ,-«JI. ^.^ .-.-.,»■--»—» ■,

m

m

The idea is that we only allow arcs to depart from S-nodes and I-nodes

and we prevent these from coalescing.

The generating set of L +. we naturally take to be X th .

Having finally fixed on L th , we may say that

extend(Kl ^L ..) is a correct compiler for L th , yielding

programs for Vjeib ; our synthesis is finished. |

115

tW^-VKrJK^'J '^rj* r^-^*r*r*WUI^*^M^M>-M*Mr.m**nu>'*r*rMnm**r MrMr.MnMrmrur^r^r^^mvr^Hr^r-..* f * m-r, .»-r. .■

XIII, Conclusion

We may ask how well this thesis has conformed to the aim^ announced

in the introduction, of bringing mathematical order as well as mathematical

rigor to a part of the theory of computation. A partial affirmative

answer is given by the fact that a very short list of well-defined ideas

provides the basis for the examples of correctness proofs which we have

seen; the fertility of these ideas appears far from exhausted:

1) The diagram of operator-algebraic homomorphisms as a model for the

compiler correctness problem, taken from [Burs 69].

2) The category of BRAs, obtained by combining the concept of the ®

operation from [Land 70] with the idea that interpretation of a

program scheme is a functor from [deB 69].

3) The result of Chapter VI, that the semantics of BRAs acts as a

homomorphism on a construction-algebra of BRAs.

h) The compiler composition theorem.

Miscellaneous Observations

The algebra L .. which we chose, for want of a better, in
—synth

Chapter XII did not impose any natural structure on flowcharts; indeed

the idea of multi- (rather than single-) entrance flowcharts, which we

forced on us because there appears to be no way to break up a i ngie-

116

■■'•■--' --^-

w

try I

"£2

g,*. entraaice flowchart into single-entrance pieces, is itself somewhat

unnatural. However, in [Cooper 71] it is shown that every flowchart

simulates (although the notion of simulation does not appear there

explicitly) a flowchart in what is there called "block form" — i.e.,

a tree form, except that an arc may lead back from any leaf to one of

its ancestors — and "reasonable", i.e., tree-structure-reflecting,

algebraic operations are given for generating the block-form flowcharts.

It seems probable, therefore, that a more perspicuous approach to the

£-; algebraic treatment of the compilation of flowcharts would be to define

first a ccmpiler (homomorphism) for block-form flowcharts, and then to

show that it can be extended to a functor between two categories of

BRAs, i.e., that it can be extended to arbitrary flowcharts in such a

way as to preserve simulations. The potential of this approach remains

to be investigated.

It is a question of some importance whether optimizing compilers,

which, particularly when they use global information about the source

program, are superficially very unlike homomorphisms, can be rendered

amenable to algebraic description. The author speculates that many

cases of optimization will allow description as an underlying non-deter-

ministic compiler (i.e., one computing a relation between source and

target language programs rather than a function) under the control of a

"black box" which selects one of the many possible compiling functions.

If we could prove the underlying compiler correct for all its possible

outputs, then we could claim correctness for the optimizing compiler

without ever concerning ourselves with the contents of the black box.

■3.1

117

^ - ■ - -

As we have defined it, a hcmomorphisra is of course

required to be a function. It seems very probable, however, that the

following property, if required of compiling relations, would make them

sufficiently like homomorphisms to allow analogous results to those of

this thesis to be obtained — (a property of a relation p , for

particular Q-algebras A and B with p: |A| -X JBl and for all CDefi

of any arity k):

p: A (a.., .. -^a) H b iff for some b ,.. .,b [p: a. i-»b. (1<0 <k)

2™* b = ^bi'",,bk^

This notion is a special case of that of "pseudohora" defined by Lloyd

in [Llo 72], for which he is able to prove a unique extension lemma.

The following ranarks develop informally the claim made in the

introduction that Dijkstra's co-operating sequential processes [Dijk 68]

can be naturally modelled by BRAs. We may define an operation x on

BRAs by:

{a>iß)7: a,b -*a',b' iff ^: a - a' or ^: b - b« . r*

It is readily verified that x is a bifunctor; it appears to play a

K
natural role in the assembly of machines from components. (Had we |j

y ty
troubled to define x earlier, we might have been spared some of the >

tediousness of assigning identity relations to "extraneous" operators

in the analysis of the machine in Chapter X into stack and location ^

b.
components.)

It appears that if we have two programs modelled by BRAs ,7 a? g ,

then the BRA which models their concurrent operation is simpl,, ^Xr. t;

118

i

Xl

i

Moreover, a semaphore ^ is just a component (under x) of a machine,

with l^j =^| , and operators Vs , Ps having the effects:

sfys1 nHn+1 '

^Ps: n+1 ^n •

The preceding explication follows Dijkstra's concept in an ugly hut

perhaps essential characteristic, that what are the possible computations

of a set of programs running concurrently is crucially dependent on Just

what is taken to be an atomic act of computation. (For example, if one

supposed that accessing the value of a variable decomposed into

destructive readout followed by restore, then programs which Dijkstra

considers to have determinate outcomes would cease to do so.) This

property is reflected in the BRA-model by the fact that the operation x

does not commute with compilation.

r V

Prognosis

An attempt will here be made to evaluate the practical applicability

of the algebraic methods which have been developed in the foregoing

chapters.

First of all it is plain that the "stratified" kind of semantics

to which we have been limited, and according to which all the constructs

(at the top level) of a language-algebra must be of the same type, is a

serious obstacle to the treatment of "realistic" languages. However, the

work of Birkhoff [Birk 70] and [Birk 71], which the author saw too late

for it to be reflected in the development above, seems to hold out hope

119

■ "• "-■ ■ rm-rw^r. ■.-» imrnf TBTTTTWT-^T^T "^'■ -v v-v 1 ^ "m ^1 ' JT', ^ ' ".' i^J I ^ 1 ^'1 ^ 1 ^ ' "I f^-L^JI V k", I ■■ ' 'J' I I ". ("VT^T^n

for a great amelioration of this difficulty. Birkhoff introduces the

notion of a "heterogeneous algebra", essentially an algebra with several

carrier sets, which is to say several types of element; each operation

has not only a numerical arity, but as well a characteristic type for

each argument and for its result. E.g., a language containing both

expressions and statements, and allowing each to be embedded in the

other, could be modelled as a single heterogeneous algebra, as could

its set of meanings which correspondingly would contain functions of

diverse types.

It appears that the notions of generating set and homomorphism are

extended to heterogeneous algebras in such a way that the elementary

theorems of universal algebra, and in particular the unique extension

lemma, are preserved. It seems reasonable to expect, therefore, that

the methods for proving compiler correctness which we have developed

will remain valid in the heterogeneous context. Birkhoff also has sane

general insights about aerived operations, of which the constructions we

have defined are a special case (at least if we regard all BRAs as

originally forming an operator algebra, say with ® and ® as operations).

Homomorphisms such as our compilers for which the target algebra

operations ar^ not given in advance but created to "go with" the

homomorphism seem to be what Birkhoff calls "cryptomorphisms".

There is also the question whether some particular kind of

sophisticated programming language feature will cause algebraic methods

of description to break down, or at best become terribly unwieldy. The

author's expectation is that the modelling of arrays and other data

structures will not present any great difficulty; he further conjecti; ^

120

M^M^^-^M^:v^:i^ \2 ±ii^mmriZ\i*si&/mxm£^

.'■V.'l ■■■V^T^ ...,.^. .:.r,.,^., ■,■■." l.-^'U-V T-U-.-J. r« J« n.H .'• .'1 l» J I npilMJFJ||l<l|.»J^l^ ,11 ^l^ww^

p

that at least a limited form of closed subroutine facility can, with

some ingenuity, be modelled directly in BRAs. Languages in which bound

M
y-\ variables play an essential role (e.g. those having dynamic declarations,

tV'V
or procedures with foraial parameters) may present graver difficulties.

It appears that the best prospect of coping with these i? to take the

meanings of program phrases to be appropriate functions of environments,

as outlined in the remarks on X-calculus semantics given above in

Chapter IV.

It is clear that the attempt to produce an algebraic proof for a

typical existing compiler will get nowhere; even if a homomorphism is

what is "really" being computed, that fact is usually well hidden. The

author expects that practical application of the methods developed here

will come, if at all, within the framework of a "verifying compiler-

compiler" — i.e., a compiler-writing system which accepts algebraic

>"-; descriptions of source and target languages and a definition of the

compiling function as a homomorphism (or rather, like our H +. ,

as a complex edifice built by extension and composition from

homomorphisms) and which produces a compiling program. The system

envisioned here would further accept algebraic specifications of source

and target language semantics, and ta able to verify assertions

accompanying the compiling specification which would constitute a proof

of the produced compiler's correctness.

This thesis plainly contains only a part of the groundwork which

must be done before a verifying compiler-compiler can be produced.

A significant part of the effort entailed in creating it would be the

devising of heuristic techniques for generating an efficient structure

121

■-'■. l^f^--V--{:^-L:i:^.-^i;:;.^

".^-I.VTCI.i'"! TVT. T^T« T^n « '

of passes and phases in the produced compiler from the numerous fragments

of the compiling function specified by the user. Incorporated in this

structure there would of course have to be an automatically generated

parser, similar to those produced by existing compiler-compilers, which

would produce from a concrete (string-of-characters) source program,

elements of the source language algebra corresponding to each of its

phrases.

Birkhoff's generalized notion of (heterogeneous) algebra should

almost certainly be the one incorporated in the verifying compiler-

compiler. Furthermore, the restriction that the target of any compiling

homomorphism must be an algebra of BRAs should certainly not be made;

even if this were generally true of the final target algebra, it would

probably be appropriate for most higher-level languages that the first

several steps of compilation should be into intermediate languages in

which the sequential nature of the ultimate computation was still

partially hidden. Indeed, for a language some of whose features were

definitional extensions to a kernel sub-language, the first steps of

compilation might well be endomorphisms.

A problem which has been totally ignored in this thesis, but whose

solution is essential to the verification of a real-world compiler, is

that of making the transition at the output end of compilation from BRAs,

however machine-language-like they may appear, to programs for some

real-world machine. Problems of memory allocation arise here, e.g. of

assigning parts of a homogeneous store to program, variable values,

and stack. Also, some device must be found by which we may accept as

correct a target program which does its best within the limits of

122

M^^^fe^

■-• . ^. -r. rrH3i .:T'.7I -I-V-^I --r-TT-rTü-wnft'-j--u'rv' 'jv vl .^ \n\mITi 'TV\"?V UV".NW '."V ITJUV OT L^.W IK IX Uli LVW. W .VLVTv^?^

r. •

■ f-

available memory, but comes to an error stop when space is exhausted.

The author expects that this part of the compiling problem will not

prove intractable, but on no other than intuitive grounds.

Finally, of course, a verifying compiler-compiler would have to

incorporate a proof checker capable of appreciating the reasoning about

algebras, relations, and functions on which the correctness of compilers

might depend. The most promising work in this area with which the author

is acquainted is the ongoing development by Milner [Miln 72] of the

I£F system, an implementation of a logic for computable functions due

to Dana Scott.

125

■VCs-i

iMtäM&MMMM-^ ^Mmmmmmmm

'^—a- ry-j- .- u-'j-'vv V'*' ■ '■■■-■■i-i>«-iawFT>lil>ia<. ■! «'.■Llll«lllVl«i.«(T^m^n^T^^^^p^T^^7^^^^^V,!^"^*V11^1*«^

References

[Birk 70] G. Birkhoff and J. D. Lipsom, "Heterogeneous Algebras,"

Journal of Combinatorial Theory 8, pp. 115-155, 1970.

[Birk 71] G. Birkhoff, "The Role of Algebra in Computjütig," in

Computers in Algebra and Number Theory, vol. IV, SIAM-AMS

Proceedings, American Mathematical Society, 1971.

[Burs 69] R. M. BurstaU and P. J. Landin, "Programs and their

Proofs: an Algebraic Approach," in Machine Intelligence U,

(B. Meltzer and D. Michie, eds.), Edinburgh University Press, 1969.

[Burs 72] R. M. Burstall, "An Algebraic Description of Programs with

Assertions, Verification, and Simulation," in Proceedings of an

ACM Conference on Proving Assertions About Programs, SIGPLAN

Notices J, 1, Association for Computing Machinery, 1972.

[Cooper 71] D. C. Cooper, "Programs for Mechanical Program

Verification," in Machine Intelligence 6, (B. Meltzer and

D. Michie, eds.), Edinburgh University Press, I97.I.

[deB 69] J. W. deBakker and D. Scott, "A Theory of Programs,"

(mimeographed notes), IBM Seminar, Vienna, August 1969.

[Dijk 68] E. W. Dljkstra, "Co-operating Sequential Processes,"

in Programming Languages, (F. Genuys, ed.), NATO Advanced Study

Institute, Villard-de-Lans, 1966, Academic Press, London and

New York, 1968.

12^

^:^v':^>:^>^^

. T-« - >. - c --i. ^-w T-K-n-v.-^-t-1»-c.-ii:».k.» u W.B ■■!:»», »VTCL^'UBL'»,L'Wi;'^'i.,Lni-t"V!,,V,'rM.T:X^B're^alW-t''»L^ VVnVl',lS11.l,ll,".\,.L,3

i

I

^J

[Hoare 69] C. A. R. Hoare, "An Axiomatic Basis for Computer

Programming," Communications of the ACM 12, 10, October 1969.

[Karp 59] Richard Karp, "Some Applications of Logical Syntax to

Digital Computer Programming," Ph.D. Thesis, Harvard University,

1959-

[Land 70] P. J. Landin, "A Program Machine Symmetric Automata

Theory," in Machine Intelligence 5, (B. Meltzer and D. Michie, eds.),

Edinburgh University Press, 1970.

[Llo 72] C. Lloyd, "Some Concepts of Universal Algebra and their

Application to Computing Science," Computing Science Working

Paper: CSWP-1, University of Essex, February 1972.

[MacL 67] S. MacLane and G. Birkhoff, Algebra, Macmillan,

New York, I967.

[McC 62] J. McCarthy, "Towards a Mathematical Science of Computation,"

Proceedings of the ICIP, 1962.

[McC 63] J. McCarthy, "A Basis for a Mathematical Theory of

Computation," in Computer Programming and Formal Systems,

(P. Braffort and D. Hirschberg, eds.), North-Holland, Amsterdam,

1965.

[Miln 72] R. Milner, "Logic for Computable Functions: Description

of a Machine Implementation," Stanford University Artificial

Intelligence Project Memo AIM-I69, Stanford University, 1972.

125

*i ■^Mi^j^^l:?:^:

n-7%.-rTV—WV"V >u 1 *i i M I-J i-»t l^'f t'^.' "J'. V^." «U1 V R. ' ^l.. ". l^l \ l^'l^1 ^. ' «.M •: 1^1 ^l1«;!!. U^U^IH.H 1, I ^.11,,^ , V IJ IW f»^^^»^^^»^««

[Paint 67] j. A. Painter, "Semantic Correctness of i Compiler for an

Algol-like Language," Ph.D. Thesis, Stanford University, 1967.

[Scott 69] D. Scott, "A Construction of a Model for the \-Calculus,"

(mimeographed notes), Oxford Seminar, Novanber 1969.

126

'^:-n--u^ ^ ■.:..:\'jiM^>:^v-v^y>>-->>y^^^v^^;m^>>^^ ^

